Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifor | Unicode version |
Description: Rewrite a disjunction in an if statement as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3947 | . . . 4 | |
2 | 1 | orcs 394 | . . 3 |
3 | iftrue 3947 | . . 3 | |
4 | 2, 3 | eqtr4d 2501 | . 2 |
5 | iffalse 3950 | . . 3 | |
6 | biorf 405 | . . . 4 | |
7 | 6 | ifbid 3963 | . . 3 |
8 | 5, 7 | eqtr2d 2499 | . 2 |
9 | 4, 8 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
= wceq 1395 if cif 3941 |
This theorem is referenced by: cantnflem1d 8128 cantnflem1 8129 cantnflem1dOLD 8151 cantnflem1OLD 8152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |