MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifptru Unicode version

Theorem ifptru 1388
Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 3947. This is essentially dedlema 954. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifptru

Proof of Theorem ifptru
StepHypRef Expression
1 dfifp2 1382 . 2
2 simpl 457 . . . 4
32com12 31 . . 3
4 ax-1 6 . . . . 5
54a1i 11 . . . 4
6 pm2.24 109 . . . 4
75, 6jctird 544 . . 3
83, 7impbid 191 . 2
91, 8syl5bb 257 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  if-wif 1380
This theorem is referenced by:  ifpid  1390  bj-elimhyp  34160  bj-dedthm  34161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator