MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpfal Unicode version

Theorem ifpfal 1389
Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 3950. This is essentially dedlemb 955. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifpfal

Proof of Theorem ifpfal
StepHypRef Expression
1 dfifp2 1382 . 2
2 simpr 461 . . . 4
32com12 31 . . 3
4 ax-1 6 . . . . 5
54a1i 11 . . . 4
6 pm2.21 108 . . . 4
75, 6jctild 543 . . 3
83, 7impbid 191 . 2
91, 8syl5bb 257 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  /\wa 369  if-wif 1380
This theorem is referenced by:  ifpid  1390  bj-elimhyp  34160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator