Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2d Unicode version

Theorem iineq2d 4351
 Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1
iineq2d.2
Assertion
Ref Expression
iineq2d

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3
2 iineq2d.2 . . . 4
32ex 434 . . 3
41, 3ralrimi 2857 . 2
5 iineq2 4348 . 2
64, 5syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  F/wnf 1616  e.wcel 1818  A.wral 2807  |^|_ciin 4331 This theorem is referenced by:  iineq2dv  4353  pmapglbx  35493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ral 2812  df-iin 4333
 Copyright terms: Public domain W3C validator