Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2i Unicode version

Theorem iineq2i 4350
 Description: Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1
Assertion
Ref Expression
iineq2i

Proof of Theorem iineq2i
StepHypRef Expression
1 iineq2 4348 . 2
2 iuneq2i.1 . 2
31, 2mprg 2820 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  |^|_ciin 4331 This theorem is referenced by:  iinrab  4392  iinin1  4401  imaiinfv  30625  diaintclN  36785  dibintclN  36894  dihintcl  37071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-ral 2812  df-iin 4333
 Copyright terms: Public domain W3C validator