Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2i Unicode version

Theorem iuneq2i 4349
 Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1
Assertion
Ref Expression
iuneq2i

Proof of Theorem iuneq2i
StepHypRef Expression
1 iuneq2 4347 . 2
2 iuneq2i.1 . 2
31, 2mprg 2820 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  U_ciun 4330 This theorem is referenced by:  dfiunv2  4366  iunrab  4377  iunid  4385  iunin1  4395  2iunin  4398  resiun1  5297  resiun2  5298  dfimafn2  5923  dfmpt  6076  funiunfv  6160  fpar  6904  onovuni  7032  uniqs  7390  marypha2lem2  7916  alephlim  8469  cfsmolem  8671  ituniiun  8823  imasdsval2  14913  lpival  17893  cmpsublem  19899  txbasval  20107  uniioombllem2  21992  uniioombllem4  21995  volsup2  22014  itg1addlem5  22107  itg1climres  22121  indval2  28028  sigaclfu2  28121  measvuni  28185  trpred0  29319  rabiun  30036  mblfinlem2  30052  voliunnfl  30058  cnambfre  30063  dfaimafn2  32251  xpiun  32454 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-iun 4332
 Copyright terms: Public domain W3C validator