Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ituniiun | Unicode version |
Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u |
Ref | Expression |
---|---|
ituniiun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . 4 | |
2 | 1 | fveq1d 5873 | . . 3 |
3 | iuneq1 4344 | . . 3 | |
4 | 2, 3 | eqeq12d 2479 | . 2 |
5 | suceq 4948 | . . . . . 6 | |
6 | 5 | fveq2d 5875 | . . . . 5 |
7 | fveq2 5871 | . . . . . 6 | |
8 | 7 | iuneq2d 4357 | . . . . 5 |
9 | 6, 8 | eqeq12d 2479 | . . . 4 |
10 | suceq 4948 | . . . . . 6 | |
11 | 10 | fveq2d 5875 | . . . . 5 |
12 | fveq2 5871 | . . . . . 6 | |
13 | 12 | iuneq2d 4357 | . . . . 5 |
14 | 11, 13 | eqeq12d 2479 | . . . 4 |
15 | suceq 4948 | . . . . . 6 | |
16 | 15 | fveq2d 5875 | . . . . 5 |
17 | fveq2 5871 | . . . . . 6 | |
18 | 17 | iuneq2d 4357 | . . . . 5 |
19 | 16, 18 | eqeq12d 2479 | . . . 4 |
20 | suceq 4948 | . . . . . 6 | |
21 | 20 | fveq2d 5875 | . . . . 5 |
22 | fveq2 5871 | . . . . . 6 | |
23 | 22 | iuneq2d 4357 | . . . . 5 |
24 | 21, 23 | eqeq12d 2479 | . . . 4 |
25 | uniiun 4383 | . . . . 5 | |
26 | ituni.u | . . . . . . 7 | |
27 | 26 | itunisuc 8820 | . . . . . 6 |
28 | vex 3112 | . . . . . . . 8 | |
29 | 26 | ituni0 8819 | . . . . . . . 8 |
30 | 28, 29 | ax-mp 5 | . . . . . . 7 |
31 | 30 | unieqi 4258 | . . . . . 6 |
32 | 27, 31 | eqtri 2486 | . . . . 5 |
33 | 26 | ituni0 8819 | . . . . . 6 |
34 | 33 | iuneq2i 4349 | . . . . 5 |
35 | 25, 32, 34 | 3eqtr4i 2496 | . . . 4 |
36 | 26 | itunisuc 8820 | . . . . . 6 |
37 | unieq 4257 | . . . . . . 7 | |
38 | 26 | itunisuc 8820 | . . . . . . . . . 10 |
39 | 38 | a1i 11 | . . . . . . . . 9 |
40 | 39 | iuneq2i 4349 | . . . . . . . 8 |
41 | iuncom4 4338 | . . . . . . . 8 | |
42 | 40, 41 | eqtr2i 2487 | . . . . . . 7 |
43 | 37, 42 | syl6eq 2514 | . . . . . 6 |
44 | 36, 43 | syl5eq 2510 | . . . . 5 |
45 | 44 | a1i 11 | . . . 4 |
46 | 9, 14, 19, 24, 35, 45 | finds 6726 | . . 3 |
47 | iun0 4386 | . . . . 5 | |
48 | 47 | eqcomi 2470 | . . . 4 |
49 | peano2b 6716 | . . . . . 6 | |
50 | 26 | itunifn 8818 | . . . . . . . 8 |
51 | fndm 5685 | . . . . . . . 8 | |
52 | 28, 50, 51 | mp2b 10 | . . . . . . 7 |
53 | 52 | eleq2i 2535 | . . . . . 6 |
54 | 49, 53 | bitr4i 252 | . . . . 5 |
55 | ndmfv 5895 | . . . . 5 | |
56 | 54, 55 | sylnbi 306 | . . . 4 |
57 | vex 3112 | . . . . . . . 8 | |
58 | 26 | itunifn 8818 | . . . . . . . 8 |
59 | fndm 5685 | . . . . . . . 8 | |
60 | 57, 58, 59 | mp2b 10 | . . . . . . 7 |
61 | 60 | eleq2i 2535 | . . . . . 6 |
62 | ndmfv 5895 | . . . . . 6 | |
63 | 61, 62 | sylnbir 307 | . . . . 5 |
64 | 63 | iuneq2d 4357 | . . . 4 |
65 | 48, 56, 64 | 3eqtr4a 2524 | . . 3 |
66 | 46, 65 | pm2.61i 164 | . 2 |
67 | 4, 66 | vtoclg 3167 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 cvv 3109
c0 3784 U. cuni 4249 U_ ciun 4330
e. cmpt 4510 suc csuc 4885 dom cdm 5004
|` cres 5006 Fn wfn 5588 ` cfv 5593
com 6700
rec crdg 7094 |
This theorem is referenced by: hsmexlem4 8830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |