Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itunitc | Unicode version |
Description: The union of all union iterates creates the transitive closure; compare trcl 8180. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u |
Ref | Expression |
---|---|
itunitc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . 4 | |
2 | fveq2 5871 | . . . . . 6 | |
3 | 2 | rneqd 5235 | . . . . 5 |
4 | 3 | unieqd 4259 | . . . 4 |
5 | 1, 4 | eqeq12d 2479 | . . 3 |
6 | vex 3112 | . . . . . . 7 | |
7 | ituni.u | . . . . . . . 8 | |
8 | 7 | ituni0 8819 | . . . . . . 7 |
9 | 6, 8 | ax-mp 5 | . . . . . 6 |
10 | fvssunirn 5894 | . . . . . 6 | |
11 | 9, 10 | eqsstr3i 3534 | . . . . 5 |
12 | dftr3 4549 | . . . . . 6 | |
13 | 7 | itunifn 8818 | . . . . . . . 8 |
14 | fnunirn 6165 | . . . . . . . 8 | |
15 | 6, 13, 14 | mp2b 10 | . . . . . . 7 |
16 | elssuni 4279 | . . . . . . . . 9 | |
17 | 7 | itunisuc 8820 | . . . . . . . . . 10 |
18 | fvssunirn 5894 | . . . . . . . . . 10 | |
19 | 17, 18 | eqsstr3i 3534 | . . . . . . . . 9 |
20 | 16, 19 | syl6ss 3515 | . . . . . . . 8 |
21 | 20 | rexlimivw 2946 | . . . . . . 7 |
22 | 15, 21 | sylbi 195 | . . . . . 6 |
23 | 12, 22 | mprgbir 2821 | . . . . 5 |
24 | tcmin 8193 | . . . . . 6 | |
25 | 6, 24 | ax-mp 5 | . . . . 5 |
26 | 11, 23, 25 | mp2an 672 | . . . 4 |
27 | unissb 4281 | . . . . 5 | |
28 | fvelrnb 5920 | . . . . . . 7 | |
29 | 6, 13, 28 | mp2b 10 | . . . . . 6 |
30 | 7 | itunitc1 8821 | . . . . . . . . 9 |
31 | 30 | a1i 11 | . . . . . . . 8 |
32 | sseq1 3524 | . . . . . . . 8 | |
33 | 31, 32 | syl5ibcom 220 | . . . . . . 7 |
34 | 33 | rexlimiv 2943 | . . . . . 6 |
35 | 29, 34 | sylbi 195 | . . . . 5 |
36 | 27, 35 | mprgbir 2821 | . . . 4 |
37 | 26, 36 | eqssi 3519 | . . 3 |
38 | 5, 37 | vtoclg 3167 | . 2 |
39 | rn0 5259 | . . . . 5 | |
40 | 39 | unieqi 4258 | . . . 4 |
41 | uni0 4276 | . . . 4 | |
42 | 40, 41 | eqtr2i 2487 | . . 3 |
43 | fvprc 5865 | . . 3 | |
44 | fvprc 5865 | . . . . 5 | |
45 | 44 | rneqd 5235 | . . . 4 |
46 | 45 | unieqd 4259 | . . 3 |
47 | 42, 43, 46 | 3eqtr4a 2524 | . 2 |
48 | 38, 47 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 U. cuni 4249 e. cmpt 4510
Tr wtr 4545 suc csuc 4885 ran crn 5005
|` cres 5006 Fn wfn 5588 ` cfv 5593
com 6700
rec crdg 7094
ctc 8188 |
This theorem is referenced by: hsmexlem5 8831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-tc 8189 |
Copyright terms: Public domain | W3C validator |