Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itunitc1 | Unicode version |
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
ituni.u |
Ref | Expression |
---|---|
itunitc1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . 5 | |
2 | 1 | fveq1d 5873 | . . . 4 |
3 | fveq2 5871 | . . . 4 | |
4 | 2, 3 | sseq12d 3532 | . . 3 |
5 | fveq2 5871 | . . . . . 6 | |
6 | 5 | sseq1d 3530 | . . . . 5 |
7 | fveq2 5871 | . . . . . 6 | |
8 | 7 | sseq1d 3530 | . . . . 5 |
9 | fveq2 5871 | . . . . . 6 | |
10 | 9 | sseq1d 3530 | . . . . 5 |
11 | fveq2 5871 | . . . . . 6 | |
12 | 11 | sseq1d 3530 | . . . . 5 |
13 | vex 3112 | . . . . . 6 | |
14 | ituni.u | . . . . . . . 8 | |
15 | 14 | ituni0 8819 | . . . . . . 7 |
16 | tcid 8191 | . . . . . . 7 | |
17 | 15, 16 | eqsstrd 3537 | . . . . . 6 |
18 | 13, 17 | ax-mp 5 | . . . . 5 |
19 | 14 | itunisuc 8820 | . . . . . . 7 |
20 | tctr 8192 | . . . . . . . . . 10 | |
21 | pwtr 4705 | . . . . . . . . . 10 | |
22 | 20, 21 | mpbi 208 | . . . . . . . . 9 |
23 | trss 4554 | . . . . . . . . 9 | |
24 | 22, 23 | ax-mp 5 | . . . . . . . 8 |
25 | fvex 5881 | . . . . . . . . 9 | |
26 | 25 | elpw 4018 | . . . . . . . 8 |
27 | sspwuni 4416 | . . . . . . . 8 | |
28 | 24, 26, 27 | 3imtr3i 265 | . . . . . . 7 |
29 | 19, 28 | syl5eqss 3547 | . . . . . 6 |
30 | 29 | a1i 11 | . . . . 5 |
31 | 6, 8, 10, 12, 18, 30 | finds 6726 | . . . 4 |
32 | 14 | itunifn 8818 | . . . . . . . 8 |
33 | fndm 5685 | . . . . . . . 8 | |
34 | 13, 32, 33 | mp2b 10 | . . . . . . 7 |
35 | 34 | eleq2i 2535 | . . . . . 6 |
36 | ndmfv 5895 | . . . . . 6 | |
37 | 35, 36 | sylnbir 307 | . . . . 5 |
38 | 0ss 3814 | . . . . 5 | |
39 | 37, 38 | syl6eqss 3553 | . . . 4 |
40 | 31, 39 | pm2.61i 164 | . . 3 |
41 | 4, 40 | vtoclg 3167 | . 2 |
42 | fvprc 5865 | . . . . 5 | |
43 | 42 | fveq1d 5873 | . . . 4 |
44 | 0fv 5904 | . . . 4 | |
45 | 43, 44 | syl6eq 2514 | . . 3 |
46 | 0ss 3814 | . . 3 | |
47 | 45, 46 | syl6eqss 3553 | . 2 |
48 | 41, 47 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 e. wcel 1818 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 U. cuni 4249
e. cmpt 4510 Tr wtr 4545 suc csuc 4885
dom cdm 5004 |` cres 5006 Fn wfn 5588
` cfv 5593 com 6700
rec crdg 7094
ctc 8188 |
This theorem is referenced by: itunitc 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-tc 8189 |
Copyright terms: Public domain | W3C validator |