Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
2 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ 𝐴 ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( TC ‘ 𝑎 ) = ( TC ‘ 𝐴 ) ) |
5 |
3 4
|
sseq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑏 = ∅ → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ) |
7 |
6
|
sseq1d |
⊢ ( 𝑏 = ∅ → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ⊆ ( TC ‘ 𝑎 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝑏 = 𝑐 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑏 = suc 𝑐 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) |
11 |
10
|
sseq1d |
⊢ ( 𝑏 = suc 𝑐 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
13 |
12
|
sseq1d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑏 ) ⊆ ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝑎 ) ) ) |
14 |
1
|
ituni0 |
⊢ ( 𝑎 ∈ V → ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 ) |
15 |
|
tcid |
⊢ ( 𝑎 ∈ V → 𝑎 ⊆ ( TC ‘ 𝑎 ) ) |
16 |
14 15
|
eqsstrd |
⊢ ( 𝑎 ∈ V → ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ⊆ ( TC ‘ 𝑎 ) ) |
17 |
16
|
elv |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ⊆ ( TC ‘ 𝑎 ) |
18 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
19 |
|
tctr |
⊢ Tr ( TC ‘ 𝑎 ) |
20 |
|
pwtr |
⊢ ( Tr ( TC ‘ 𝑎 ) ↔ Tr 𝒫 ( TC ‘ 𝑎 ) ) |
21 |
19 20
|
mpbi |
⊢ Tr 𝒫 ( TC ‘ 𝑎 ) |
22 |
|
trss |
⊢ ( Tr 𝒫 ( TC ‘ 𝑎 ) → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ∈ 𝒫 ( TC ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ 𝒫 ( TC ‘ 𝑎 ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ∈ 𝒫 ( TC ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ 𝒫 ( TC ‘ 𝑎 ) ) |
24 |
|
fvex |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ∈ V |
25 |
24
|
elpw |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ∈ 𝒫 ( TC ‘ 𝑎 ) ↔ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
26 |
|
sspwuni |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ 𝒫 ( TC ‘ 𝑎 ) ↔ ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
27 |
23 25 26
|
3imtr3i |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) → ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
28 |
18 27
|
eqsstrid |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
29 |
28
|
a1i |
⊢ ( 𝑐 ∈ ω → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) ) |
30 |
7 9 11 13 17 29
|
finds |
⊢ ( 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝑎 ) ) |
31 |
|
vex |
⊢ 𝑎 ∈ V |
32 |
1
|
itunifn |
⊢ ( 𝑎 ∈ V → ( 𝑈 ‘ 𝑎 ) Fn ω ) |
33 |
|
fndm |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → dom ( 𝑈 ‘ 𝑎 ) = ω ) |
34 |
31 32 33
|
mp2b |
⊢ dom ( 𝑈 ‘ 𝑎 ) = ω |
35 |
34
|
eleq2i |
⊢ ( 𝐵 ∈ dom ( 𝑈 ‘ 𝑎 ) ↔ 𝐵 ∈ ω ) |
36 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom ( 𝑈 ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∅ ) |
37 |
35 36
|
sylnbir |
⊢ ( ¬ 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∅ ) |
38 |
|
0ss |
⊢ ∅ ⊆ ( TC ‘ 𝑎 ) |
39 |
37 38
|
eqsstrdi |
⊢ ( ¬ 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝑎 ) ) |
40 |
30 39
|
pm2.61i |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝑎 ) |
41 |
5 40
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |
42 |
|
fv2prc |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) = ∅ ) |
43 |
|
0ss |
⊢ ∅ ⊆ ( TC ‘ 𝐴 ) |
44 |
42 43
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) ) |
45 |
41 44
|
pm2.61i |
⊢ ( ( 𝑈 ‘ 𝐴 ) ‘ 𝐵 ) ⊆ ( TC ‘ 𝐴 ) |