| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ituni.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( TC ‘ 𝑎 ) = ( TC ‘ 𝐴 ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ 𝐴 ) ) |
| 4 |
3
|
rneqd |
⊢ ( 𝑎 = 𝐴 → ran ( 𝑈 ‘ 𝑎 ) = ran ( 𝑈 ‘ 𝐴 ) ) |
| 5 |
4
|
unieqd |
⊢ ( 𝑎 = 𝐴 → ∪ ran ( 𝑈 ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
| 6 |
2 5
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( TC ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) ) |
| 7 |
1
|
ituni0 |
⊢ ( 𝑎 ∈ V → ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 ) |
| 8 |
7
|
elv |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 |
| 9 |
|
fvssunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 10 |
8 9
|
eqsstrri |
⊢ 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 11 |
|
dftr3 |
⊢ ( Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∀ 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
| 12 |
|
vex |
⊢ 𝑎 ∈ V |
| 13 |
1
|
itunifn |
⊢ ( 𝑎 ∈ V → ( 𝑈 ‘ 𝑎 ) Fn ω ) |
| 14 |
|
fnunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) ) |
| 15 |
12 13 14
|
mp2b |
⊢ ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 16 |
|
elssuni |
⊢ ( 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
| 17 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
| 18 |
|
fvssunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 19 |
17 18
|
eqsstrri |
⊢ ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 20 |
16 19
|
sstrdi |
⊢ ( 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
| 21 |
20
|
rexlimivw |
⊢ ( ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
| 22 |
15 21
|
sylbi |
⊢ ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
| 23 |
11 22
|
mprgbir |
⊢ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 24 |
|
tcmin |
⊢ ( 𝑎 ∈ V → ( ( 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ∧ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ) → ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) ) |
| 25 |
24
|
elv |
⊢ ( ( 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ∧ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ) → ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
| 26 |
10 23 25
|
mp2an |
⊢ ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 27 |
|
unissb |
⊢ ( ∪ ran ( 𝑈 ‘ 𝑎 ) ⊆ ( TC ‘ 𝑎 ) ↔ ∀ 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
| 28 |
|
fvelrnb |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 ) ) |
| 29 |
12 13 28
|
mp2b |
⊢ ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 ) |
| 30 |
1
|
itunitc1 |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) |
| 31 |
30
|
a1i |
⊢ ( 𝑐 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
| 32 |
|
sseq1 |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ↔ 𝑏 ⊆ ( TC ‘ 𝑎 ) ) ) |
| 33 |
31 32
|
syl5ibcom |
⊢ ( 𝑐 ∈ ω → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) ) |
| 34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
| 35 |
29 34
|
sylbi |
⊢ ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
| 36 |
27 35
|
mprgbir |
⊢ ∪ ran ( 𝑈 ‘ 𝑎 ) ⊆ ( TC ‘ 𝑎 ) |
| 37 |
26 36
|
eqssi |
⊢ ( TC ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝑎 ) |
| 38 |
6 37
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
| 39 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 40 |
39
|
unieqi |
⊢ ∪ ran ∅ = ∪ ∅ |
| 41 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 42 |
40 41
|
eqtr2i |
⊢ ∅ = ∪ ran ∅ |
| 43 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∅ ) |
| 44 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑈 ‘ 𝐴 ) = ∅ ) |
| 45 |
44
|
rneqd |
⊢ ( ¬ 𝐴 ∈ V → ran ( 𝑈 ‘ 𝐴 ) = ran ∅ ) |
| 46 |
45
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ ran ( 𝑈 ‘ 𝐴 ) = ∪ ran ∅ ) |
| 47 |
42 43 46
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
| 48 |
38 47
|
pm2.61i |
⊢ ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) |