Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
2 |
|
fveq2 |
|- ( a = A -> ( TC ` a ) = ( TC ` A ) ) |
3 |
|
fveq2 |
|- ( a = A -> ( U ` a ) = ( U ` A ) ) |
4 |
3
|
rneqd |
|- ( a = A -> ran ( U ` a ) = ran ( U ` A ) ) |
5 |
4
|
unieqd |
|- ( a = A -> U. ran ( U ` a ) = U. ran ( U ` A ) ) |
6 |
2 5
|
eqeq12d |
|- ( a = A -> ( ( TC ` a ) = U. ran ( U ` a ) <-> ( TC ` A ) = U. ran ( U ` A ) ) ) |
7 |
1
|
ituni0 |
|- ( a e. _V -> ( ( U ` a ) ` (/) ) = a ) |
8 |
7
|
elv |
|- ( ( U ` a ) ` (/) ) = a |
9 |
|
fvssunirn |
|- ( ( U ` a ) ` (/) ) C_ U. ran ( U ` a ) |
10 |
8 9
|
eqsstrri |
|- a C_ U. ran ( U ` a ) |
11 |
|
dftr3 |
|- ( Tr U. ran ( U ` a ) <-> A. b e. U. ran ( U ` a ) b C_ U. ran ( U ` a ) ) |
12 |
|
vex |
|- a e. _V |
13 |
1
|
itunifn |
|- ( a e. _V -> ( U ` a ) Fn _om ) |
14 |
|
fnunirn |
|- ( ( U ` a ) Fn _om -> ( b e. U. ran ( U ` a ) <-> E. c e. _om b e. ( ( U ` a ) ` c ) ) ) |
15 |
12 13 14
|
mp2b |
|- ( b e. U. ran ( U ` a ) <-> E. c e. _om b e. ( ( U ` a ) ` c ) ) |
16 |
|
elssuni |
|- ( b e. ( ( U ` a ) ` c ) -> b C_ U. ( ( U ` a ) ` c ) ) |
17 |
1
|
itunisuc |
|- ( ( U ` a ) ` suc c ) = U. ( ( U ` a ) ` c ) |
18 |
|
fvssunirn |
|- ( ( U ` a ) ` suc c ) C_ U. ran ( U ` a ) |
19 |
17 18
|
eqsstrri |
|- U. ( ( U ` a ) ` c ) C_ U. ran ( U ` a ) |
20 |
16 19
|
sstrdi |
|- ( b e. ( ( U ` a ) ` c ) -> b C_ U. ran ( U ` a ) ) |
21 |
20
|
rexlimivw |
|- ( E. c e. _om b e. ( ( U ` a ) ` c ) -> b C_ U. ran ( U ` a ) ) |
22 |
15 21
|
sylbi |
|- ( b e. U. ran ( U ` a ) -> b C_ U. ran ( U ` a ) ) |
23 |
11 22
|
mprgbir |
|- Tr U. ran ( U ` a ) |
24 |
|
tcmin |
|- ( a e. _V -> ( ( a C_ U. ran ( U ` a ) /\ Tr U. ran ( U ` a ) ) -> ( TC ` a ) C_ U. ran ( U ` a ) ) ) |
25 |
24
|
elv |
|- ( ( a C_ U. ran ( U ` a ) /\ Tr U. ran ( U ` a ) ) -> ( TC ` a ) C_ U. ran ( U ` a ) ) |
26 |
10 23 25
|
mp2an |
|- ( TC ` a ) C_ U. ran ( U ` a ) |
27 |
|
unissb |
|- ( U. ran ( U ` a ) C_ ( TC ` a ) <-> A. b e. ran ( U ` a ) b C_ ( TC ` a ) ) |
28 |
|
fvelrnb |
|- ( ( U ` a ) Fn _om -> ( b e. ran ( U ` a ) <-> E. c e. _om ( ( U ` a ) ` c ) = b ) ) |
29 |
12 13 28
|
mp2b |
|- ( b e. ran ( U ` a ) <-> E. c e. _om ( ( U ` a ) ` c ) = b ) |
30 |
1
|
itunitc1 |
|- ( ( U ` a ) ` c ) C_ ( TC ` a ) |
31 |
30
|
a1i |
|- ( c e. _om -> ( ( U ` a ) ` c ) C_ ( TC ` a ) ) |
32 |
|
sseq1 |
|- ( ( ( U ` a ) ` c ) = b -> ( ( ( U ` a ) ` c ) C_ ( TC ` a ) <-> b C_ ( TC ` a ) ) ) |
33 |
31 32
|
syl5ibcom |
|- ( c e. _om -> ( ( ( U ` a ) ` c ) = b -> b C_ ( TC ` a ) ) ) |
34 |
33
|
rexlimiv |
|- ( E. c e. _om ( ( U ` a ) ` c ) = b -> b C_ ( TC ` a ) ) |
35 |
29 34
|
sylbi |
|- ( b e. ran ( U ` a ) -> b C_ ( TC ` a ) ) |
36 |
27 35
|
mprgbir |
|- U. ran ( U ` a ) C_ ( TC ` a ) |
37 |
26 36
|
eqssi |
|- ( TC ` a ) = U. ran ( U ` a ) |
38 |
6 37
|
vtoclg |
|- ( A e. _V -> ( TC ` A ) = U. ran ( U ` A ) ) |
39 |
|
rn0 |
|- ran (/) = (/) |
40 |
39
|
unieqi |
|- U. ran (/) = U. (/) |
41 |
|
uni0 |
|- U. (/) = (/) |
42 |
40 41
|
eqtr2i |
|- (/) = U. ran (/) |
43 |
|
fvprc |
|- ( -. A e. _V -> ( TC ` A ) = (/) ) |
44 |
|
fvprc |
|- ( -. A e. _V -> ( U ` A ) = (/) ) |
45 |
44
|
rneqd |
|- ( -. A e. _V -> ran ( U ` A ) = ran (/) ) |
46 |
45
|
unieqd |
|- ( -. A e. _V -> U. ran ( U ` A ) = U. ran (/) ) |
47 |
42 43 46
|
3eqtr4a |
|- ( -. A e. _V -> ( TC ` A ) = U. ran ( U ` A ) ) |
48 |
38 47
|
pm2.61i |
|- ( TC ` A ) = U. ran ( U ` A ) |