| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tcvalg | 
							 |-  ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) | 
						
						
							| 2 | 
							
								
							 | 
							fvex | 
							 |-  ( TC ` A ) e. _V  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqeltrrdi | 
							 |-  ( A e. V -> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) | 
						
						
							| 4 | 
							
								
							 | 
							intexab | 
							 |-  ( E. x ( A C_ x /\ Tr x ) <-> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylibr | 
							 |-  ( A e. V -> E. x ( A C_ x /\ Tr x ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ssin | 
							 |-  ( ( A C_ x /\ A C_ B ) <-> A C_ ( x i^i B ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpi | 
							 |-  ( ( A C_ x /\ A C_ B ) -> A C_ ( x i^i B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							trin | 
							 |-  ( ( Tr x /\ Tr B ) -> Tr ( x i^i B ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							anim12i | 
							 |-  ( ( ( A C_ x /\ A C_ B ) /\ ( Tr x /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							an4s | 
							 |-  ( ( ( A C_ x /\ Tr x ) /\ ( A C_ B /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							expcom | 
							 |-  ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 13 | 
							
								12
							 | 
							inex1 | 
							 |-  ( x i^i B ) e. _V  | 
						
						
							| 14 | 
							
								
							 | 
							sseq2 | 
							 |-  ( y = ( x i^i B ) -> ( A C_ y <-> A C_ ( x i^i B ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							treq | 
							 |-  ( y = ( x i^i B ) -> ( Tr y <-> Tr ( x i^i B ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							anbi12d | 
							 |-  ( y = ( x i^i B ) -> ( ( A C_ y /\ Tr y ) <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							elab | 
							 |-  ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) | 
						
						
							| 18 | 
							
								
							 | 
							intss1 | 
							 |-  ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylbir | 
							 |-  ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) | 
						
						
							| 20 | 
							
								
							 | 
							inss2 | 
							 |-  ( x i^i B ) C_ B  | 
						
						
							| 21 | 
							
								19 20
							 | 
							sstrdi | 
							 |-  ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) | 
						
						
							| 22 | 
							
								11 21
							 | 
							syl6 | 
							 |-  ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							exlimdv | 
							 |-  ( ( A C_ B /\ Tr B ) -> ( E. x ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) | 
						
						
							| 24 | 
							
								5 23
							 | 
							syl5com | 
							 |-  ( A e. V -> ( ( A C_ B /\ Tr B ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) | 
						
						
							| 25 | 
							
								
							 | 
							tcvalg | 
							 |-  ( A e. V -> ( TC ` A ) = |^| { y | ( A C_ y /\ Tr y ) } ) | 
						
						
							| 26 | 
							
								25
							 | 
							sseq1d | 
							 |-  ( A e. V -> ( ( TC ` A ) C_ B <-> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) | 
						
						
							| 27 | 
							
								24 26
							 | 
							sylibrd | 
							 |-  ( A e. V -> ( ( A C_ B /\ Tr B ) -> ( TC ` A ) C_ B ) )  |