Metamath Proof Explorer


Theorem itunitc

Description: The union of all union iterates creates the transitive closure; compare trcl . (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion itunitc TCA=ranUA

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 fveq2 a=ATCa=TCA
3 fveq2 a=AUa=UA
4 3 rneqd a=AranUa=ranUA
5 4 unieqd a=AranUa=ranUA
6 2 5 eqeq12d a=ATCa=ranUaTCA=ranUA
7 1 ituni0 aVUa=a
8 7 elv Ua=a
9 fvssunirn UaranUa
10 8 9 eqsstrri aranUa
11 dftr3 TrranUabranUabranUa
12 vex aV
13 1 itunifn aVUaFnω
14 fnunirn UaFnωbranUacωbUac
15 12 13 14 mp2b branUacωbUac
16 elssuni bUacbUac
17 1 itunisuc Uasucc=Uac
18 fvssunirn UasuccranUa
19 17 18 eqsstrri UacranUa
20 16 19 sstrdi bUacbranUa
21 20 rexlimivw cωbUacbranUa
22 15 21 sylbi branUabranUa
23 11 22 mprgbir TrranUa
24 tcmin aVaranUaTrranUaTCaranUa
25 24 elv aranUaTrranUaTCaranUa
26 10 23 25 mp2an TCaranUa
27 unissb ranUaTCabranUabTCa
28 fvelrnb UaFnωbranUacωUac=b
29 12 13 28 mp2b branUacωUac=b
30 1 itunitc1 UacTCa
31 30 a1i cωUacTCa
32 sseq1 Uac=bUacTCabTCa
33 31 32 syl5ibcom cωUac=bbTCa
34 33 rexlimiv cωUac=bbTCa
35 29 34 sylbi branUabTCa
36 27 35 mprgbir ranUaTCa
37 26 36 eqssi TCa=ranUa
38 6 37 vtoclg AVTCA=ranUA
39 rn0 ran=
40 39 unieqi ran=
41 uni0 =
42 40 41 eqtr2i =ran
43 fvprc ¬AVTCA=
44 fvprc ¬AVUA=
45 44 rneqd ¬AVranUA=ran
46 45 unieqd ¬AVranUA=ran
47 42 43 46 3eqtr4a ¬AVTCA=ranUA
48 38 47 pm2.61i TCA=ranUA