Metamath Proof Explorer


Theorem itunitc

Description: The union of all union iterates creates the transitive closure; compare trcl . (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion itunitc TC A = ran U A

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 fveq2 a = A TC a = TC A
3 fveq2 a = A U a = U A
4 3 rneqd a = A ran U a = ran U A
5 4 unieqd a = A ran U a = ran U A
6 2 5 eqeq12d a = A TC a = ran U a TC A = ran U A
7 1 ituni0 a V U a = a
8 7 elv U a = a
9 fvssunirn U a ran U a
10 8 9 eqsstrri a ran U a
11 dftr3 Tr ran U a b ran U a b ran U a
12 vex a V
13 1 itunifn a V U a Fn ω
14 fnunirn U a Fn ω b ran U a c ω b U a c
15 12 13 14 mp2b b ran U a c ω b U a c
16 elssuni b U a c b U a c
17 1 itunisuc U a suc c = U a c
18 fvssunirn U a suc c ran U a
19 17 18 eqsstrri U a c ran U a
20 16 19 sstrdi b U a c b ran U a
21 20 rexlimivw c ω b U a c b ran U a
22 15 21 sylbi b ran U a b ran U a
23 11 22 mprgbir Tr ran U a
24 tcmin a V a ran U a Tr ran U a TC a ran U a
25 24 elv a ran U a Tr ran U a TC a ran U a
26 10 23 25 mp2an TC a ran U a
27 unissb ran U a TC a b ran U a b TC a
28 fvelrnb U a Fn ω b ran U a c ω U a c = b
29 12 13 28 mp2b b ran U a c ω U a c = b
30 1 itunitc1 U a c TC a
31 30 a1i c ω U a c TC a
32 sseq1 U a c = b U a c TC a b TC a
33 31 32 syl5ibcom c ω U a c = b b TC a
34 33 rexlimiv c ω U a c = b b TC a
35 29 34 sylbi b ran U a b TC a
36 27 35 mprgbir ran U a TC a
37 26 36 eqssi TC a = ran U a
38 6 37 vtoclg A V TC A = ran U A
39 rn0 ran =
40 39 unieqi ran =
41 uni0 =
42 40 41 eqtr2i = ran
43 fvprc ¬ A V TC A =
44 fvprc ¬ A V U A =
45 44 rneqd ¬ A V ran U A = ran
46 45 unieqd ¬ A V ran U A = ran
47 42 43 46 3eqtr4a ¬ A V TC A = ran U A
48 38 47 pm2.61i TC A = ran U A