Metamath Proof Explorer


Theorem itunifn

Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion itunifn AVUAFnω

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 frfnom recyVyAωFnω
3 1 itunifval AVUA=recyVyAω
4 3 fneq1d AVUAFnωrecyVyAωFnω
5 2 4 mpbiri AVUAFnω