Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
| Assertion | itunifn | |- ( A e. V -> ( U ` A ) Fn _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
| 2 | frfnom | |- ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om |
|
| 3 | 1 | itunifval | |- ( A e. V -> ( U ` A ) = ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ) |
| 4 | 3 | fneq1d | |- ( A e. V -> ( ( U ` A ) Fn _om <-> ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om ) ) |
| 5 | 2 4 | mpbiri | |- ( A e. V -> ( U ` A ) Fn _om ) |