Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ituni.u | ⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) | |
| Assertion | itunifn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ‘ 𝐴 ) Fn ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ituni.u | ⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) | |
| 2 | frfnom | ⊢ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) Fn ω | |
| 3 | 1 | itunifval | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ‘ 𝐴 ) = ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) ) |
| 4 | 3 | fneq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑈 ‘ 𝐴 ) Fn ω ↔ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝐴 ) ↾ ω ) Fn ω ) ) |
| 5 | 2 4 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ‘ 𝐴 ) Fn ω ) |