Metamath Proof Explorer


Theorem ituni0

Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion ituni0 AVUA=A

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 1 itunifval AVUA=recyVyAω
3 2 fveq1d AVUA=recyVyAω
4 fr0g AVrecyVyAω=A
5 3 4 eqtrd AVUA=A