Metamath Proof Explorer


Theorem itunitc1

Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion itunitc1 UABTCA

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 fveq2 a=AUa=UA
3 2 fveq1d a=AUaB=UAB
4 fveq2 a=ATCa=TCA
5 3 4 sseq12d a=AUaBTCaUABTCA
6 fveq2 b=Uab=Ua
7 6 sseq1d b=UabTCaUaTCa
8 fveq2 b=cUab=Uac
9 8 sseq1d b=cUabTCaUacTCa
10 fveq2 b=succUab=Uasucc
11 10 sseq1d b=succUabTCaUasuccTCa
12 fveq2 b=BUab=UaB
13 12 sseq1d b=BUabTCaUaBTCa
14 1 ituni0 aVUa=a
15 tcid aVaTCa
16 14 15 eqsstrd aVUaTCa
17 16 elv UaTCa
18 1 itunisuc Uasucc=Uac
19 tctr TrTCa
20 pwtr TrTCaTr𝒫TCa
21 19 20 mpbi Tr𝒫TCa
22 trss Tr𝒫TCaUac𝒫TCaUac𝒫TCa
23 21 22 ax-mp Uac𝒫TCaUac𝒫TCa
24 fvex UacV
25 24 elpw Uac𝒫TCaUacTCa
26 sspwuni Uac𝒫TCaUacTCa
27 23 25 26 3imtr3i UacTCaUacTCa
28 18 27 eqsstrid UacTCaUasuccTCa
29 28 a1i cωUacTCaUasuccTCa
30 7 9 11 13 17 29 finds BωUaBTCa
31 vex aV
32 1 itunifn aVUaFnω
33 fndm UaFnωdomUa=ω
34 31 32 33 mp2b domUa=ω
35 34 eleq2i BdomUaBω
36 ndmfv ¬BdomUaUaB=
37 35 36 sylnbir ¬BωUaB=
38 0ss TCa
39 37 38 eqsstrdi ¬BωUaBTCa
40 30 39 pm2.61i UaBTCa
41 5 40 vtoclg AVUABTCA
42 fv2prc ¬AVUAB=
43 0ss TCA
44 42 43 eqsstrdi ¬AVUABTCA
45 41 44 pm2.61i UABTCA