Metamath Proof Explorer


Theorem tctr

Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tctr TrTCA

Proof

Step Hyp Ref Expression
1 trint yx|AxTrxTryTrx|AxTrx
2 vex yV
3 sseq2 x=yAxAy
4 treq x=yTrxTry
5 3 4 anbi12d x=yAxTrxAyTry
6 2 5 elab yx|AxTrxAyTry
7 6 simprbi yx|AxTrxTry
8 1 7 mprg Trx|AxTrx
9 tcvalg AVTCA=x|AxTrx
10 treq TCA=x|AxTrxTrTCATrx|AxTrx
11 9 10 syl AVTrTCATrx|AxTrx
12 8 11 mpbiri AVTrTCA
13 tr0 Tr
14 fvprc ¬AVTCA=
15 treq TCA=TrTCATr
16 14 15 syl ¬AVTrTCATr
17 13 16 mpbiri ¬AVTrTCA
18 12 17 pm2.61i TrTCA