Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | tctr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trint | |
|
2 | vex | |
|
3 | sseq2 | |
|
4 | treq | |
|
5 | 3 4 | anbi12d | |
6 | 2 5 | elab | |
7 | 6 | simprbi | |
8 | 1 7 | mprg | |
9 | tcvalg | |
|
10 | treq | |
|
11 | 9 10 | syl | |
12 | 8 11 | mpbiri | |
13 | tr0 | |
|
14 | fvprc | |
|
15 | treq | |
|
16 | 14 15 | syl | |
17 | 13 16 | mpbiri | |
18 | 12 17 | pm2.61i | |