Metamath Proof Explorer


Theorem pwtr

Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011) (Revised by Mario Carneiro, 15-Jun-2014)

Ref Expression
Assertion pwtr TrATr𝒫A

Proof

Step Hyp Ref Expression
1 unipw 𝒫A=A
2 1 sseq1i 𝒫A𝒫AA𝒫A
3 df-tr Tr𝒫A𝒫A𝒫A
4 dftr4 TrAA𝒫A
5 2 3 4 3bitr4ri TrATr𝒫A