Metamath Proof Explorer


Theorem fvssunirn

Description: The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fvssunirn
|- ( F ` X ) C_ U. ran F

Proof

Step Hyp Ref Expression
1 fvrn0
 |-  ( F ` X ) e. ( ran F u. { (/) } )
2 elssuni
 |-  ( ( F ` X ) e. ( ran F u. { (/) } ) -> ( F ` X ) C_ U. ( ran F u. { (/) } ) )
3 1 2 ax-mp
 |-  ( F ` X ) C_ U. ( ran F u. { (/) } )
4 uniun
 |-  U. ( ran F u. { (/) } ) = ( U. ran F u. U. { (/) } )
5 0ex
 |-  (/) e. _V
6 5 unisn
 |-  U. { (/) } = (/)
7 6 uneq2i
 |-  ( U. ran F u. U. { (/) } ) = ( U. ran F u. (/) )
8 un0
 |-  ( U. ran F u. (/) ) = U. ran F
9 4 7 8 3eqtri
 |-  U. ( ran F u. { (/) } ) = U. ran F
10 3 9 sseqtri
 |-  ( F ` X ) C_ U. ran F