Metamath Proof Explorer


Theorem trcl

Description: For any set A , show the properties of its transitive closure C . Similar to Theorem 9.1 of TakeutiZaring p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses trcl.1 𝐴 ∈ V
trcl.2 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω )
trcl.3 𝐶 = 𝑦 ∈ ω ( 𝐹𝑦 )
Assertion trcl ( 𝐴𝐶 ∧ Tr 𝐶 ∧ ∀ 𝑥 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝐶𝑥 ) )

Proof

Step Hyp Ref Expression
1 trcl.1 𝐴 ∈ V
2 trcl.2 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω )
3 trcl.3 𝐶 = 𝑦 ∈ ω ( 𝐹𝑦 )
4 peano1 ∅ ∈ ω
5 2 fveq1i ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ )
6 fr0g ( 𝐴 ∈ V → ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 )
7 1 6 ax-mp ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴
8 5 7 eqtr2i 𝐴 = ( 𝐹 ‘ ∅ )
9 8 eqimssi 𝐴 ⊆ ( 𝐹 ‘ ∅ )
10 fveq2 ( 𝑦 = ∅ → ( 𝐹𝑦 ) = ( 𝐹 ‘ ∅ ) )
11 10 sseq2d ( 𝑦 = ∅ → ( 𝐴 ⊆ ( 𝐹𝑦 ) ↔ 𝐴 ⊆ ( 𝐹 ‘ ∅ ) ) )
12 11 rspcev ( ( ∅ ∈ ω ∧ 𝐴 ⊆ ( 𝐹 ‘ ∅ ) ) → ∃ 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹𝑦 ) )
13 4 9 12 mp2an 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹𝑦 )
14 ssiun ( ∃ 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹𝑦 ) → 𝐴 𝑦 ∈ ω ( 𝐹𝑦 ) )
15 13 14 ax-mp 𝐴 𝑦 ∈ ω ( 𝐹𝑦 )
16 15 3 sseqtrri 𝐴𝐶
17 dftr2 ( Tr 𝑦 ∈ ω ( 𝐹𝑦 ) ↔ ∀ 𝑣𝑢 ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) → 𝑣 𝑦 ∈ ω ( 𝐹𝑦 ) ) )
18 eliun ( 𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ↔ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹𝑦 ) )
19 18 anbi2i ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) ↔ ( 𝑣𝑢 ∧ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹𝑦 ) ) )
20 r19.42v ( ∃ 𝑦 ∈ ω ( 𝑣𝑢𝑢 ∈ ( 𝐹𝑦 ) ) ↔ ( 𝑣𝑢 ∧ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹𝑦 ) ) )
21 19 20 bitr4i ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) ↔ ∃ 𝑦 ∈ ω ( 𝑣𝑢𝑢 ∈ ( 𝐹𝑦 ) ) )
22 elunii ( ( 𝑣𝑢𝑢 ∈ ( 𝐹𝑦 ) ) → 𝑣 ( 𝐹𝑦 ) )
23 ssun2 ( 𝐹𝑦 ) ⊆ ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) )
24 fvex ( 𝐹𝑦 ) ∈ V
25 24 uniex ( 𝐹𝑦 ) ∈ V
26 24 25 unex ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ∈ V
27 id ( 𝑥 = 𝑧𝑥 = 𝑧 )
28 unieq ( 𝑥 = 𝑧 𝑥 = 𝑧 )
29 27 28 uneq12d ( 𝑥 = 𝑧 → ( 𝑥 𝑥 ) = ( 𝑧 𝑧 ) )
30 id ( 𝑥 = ( 𝐹𝑦 ) → 𝑥 = ( 𝐹𝑦 ) )
31 unieq ( 𝑥 = ( 𝐹𝑦 ) → 𝑥 = ( 𝐹𝑦 ) )
32 30 31 uneq12d ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑥 𝑥 ) = ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) )
33 2 29 32 frsucmpt2w ( ( 𝑦 ∈ ω ∧ ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ∈ V ) → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) )
34 26 33 mpan2 ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) )
35 23 34 sseqtrrid ( 𝑦 ∈ ω → ( 𝐹𝑦 ) ⊆ ( 𝐹 ‘ suc 𝑦 ) )
36 35 sseld ( 𝑦 ∈ ω → ( 𝑣 ( 𝐹𝑦 ) → 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) )
37 22 36 syl5 ( 𝑦 ∈ ω → ( ( 𝑣𝑢𝑢 ∈ ( 𝐹𝑦 ) ) → 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) )
38 37 reximia ( ∃ 𝑦 ∈ ω ( 𝑣𝑢𝑢 ∈ ( 𝐹𝑦 ) ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) )
39 21 38 sylbi ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) )
40 peano2 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
41 fveq2 ( 𝑢 = suc 𝑦 → ( 𝐹𝑢 ) = ( 𝐹 ‘ suc 𝑦 ) )
42 41 eleq2d ( 𝑢 = suc 𝑦 → ( 𝑣 ∈ ( 𝐹𝑢 ) ↔ 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) )
43 42 rspcev ( ( suc 𝑦 ∈ ω ∧ 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹𝑢 ) )
44 43 ex ( suc 𝑦 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹𝑢 ) ) )
45 40 44 syl ( 𝑦 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹𝑢 ) ) )
46 45 rexlimiv ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹𝑢 ) )
47 fveq2 ( 𝑦 = 𝑢 → ( 𝐹𝑦 ) = ( 𝐹𝑢 ) )
48 47 eleq2d ( 𝑦 = 𝑢 → ( 𝑣 ∈ ( 𝐹𝑦 ) ↔ 𝑣 ∈ ( 𝐹𝑢 ) ) )
49 48 cbvrexvw ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹𝑦 ) ↔ ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹𝑢 ) )
50 46 49 sylibr ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹𝑦 ) )
51 eliun ( 𝑣 𝑦 ∈ ω ( 𝐹𝑦 ) ↔ ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹𝑦 ) )
52 50 51 sylibr ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → 𝑣 𝑦 ∈ ω ( 𝐹𝑦 ) )
53 39 52 syl ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) → 𝑣 𝑦 ∈ ω ( 𝐹𝑦 ) )
54 53 ax-gen 𝑢 ( ( 𝑣𝑢𝑢 𝑦 ∈ ω ( 𝐹𝑦 ) ) → 𝑣 𝑦 ∈ ω ( 𝐹𝑦 ) )
55 17 54 mpgbir Tr 𝑦 ∈ ω ( 𝐹𝑦 )
56 treq ( 𝐶 = 𝑦 ∈ ω ( 𝐹𝑦 ) → ( Tr 𝐶 ↔ Tr 𝑦 ∈ ω ( 𝐹𝑦 ) ) )
57 3 56 ax-mp ( Tr 𝐶 ↔ Tr 𝑦 ∈ ω ( 𝐹𝑦 ) )
58 55 57 mpbir Tr 𝐶
59 fveq2 ( 𝑣 = ∅ → ( 𝐹𝑣 ) = ( 𝐹 ‘ ∅ ) )
60 59 sseq1d ( 𝑣 = ∅ → ( ( 𝐹𝑣 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ ∅ ) ⊆ 𝑥 ) )
61 fveq2 ( 𝑣 = 𝑦 → ( 𝐹𝑣 ) = ( 𝐹𝑦 ) )
62 61 sseq1d ( 𝑣 = 𝑦 → ( ( 𝐹𝑣 ) ⊆ 𝑥 ↔ ( 𝐹𝑦 ) ⊆ 𝑥 ) )
63 fveq2 ( 𝑣 = suc 𝑦 → ( 𝐹𝑣 ) = ( 𝐹 ‘ suc 𝑦 ) )
64 63 sseq1d ( 𝑣 = suc 𝑦 → ( ( 𝐹𝑣 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) )
65 5 7 eqtri ( 𝐹 ‘ ∅ ) = 𝐴
66 65 sseq1i ( ( 𝐹 ‘ ∅ ) ⊆ 𝑥𝐴𝑥 )
67 66 biimpri ( 𝐴𝑥 → ( 𝐹 ‘ ∅ ) ⊆ 𝑥 )
68 67 adantr ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ( 𝐹 ‘ ∅ ) ⊆ 𝑥 )
69 uniss ( ( 𝐹𝑦 ) ⊆ 𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 )
70 df-tr ( Tr 𝑥 𝑥𝑥 )
71 sstr2 ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( 𝑥𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 ) )
72 70 71 syl5bi ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 ) )
73 69 72 syl ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 ) )
74 73 anc2li ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( ( 𝐹𝑦 ) ⊆ 𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 ) ) )
75 unss ( ( ( 𝐹𝑦 ) ⊆ 𝑥 ( 𝐹𝑦 ) ⊆ 𝑥 ) ↔ ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ⊆ 𝑥 )
76 74 75 syl6ib ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ⊆ 𝑥 ) )
77 34 sseq1d ( 𝑦 ∈ ω → ( ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ↔ ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ⊆ 𝑥 ) )
78 77 biimprd ( 𝑦 ∈ ω → ( ( ( 𝐹𝑦 ) ∪ ( 𝐹𝑦 ) ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) )
79 76 78 syl9r ( 𝑦 ∈ ω → ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) )
80 79 com23 ( 𝑦 ∈ ω → ( Tr 𝑥 → ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) )
81 80 adantld ( 𝑦 ∈ ω → ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ( ( 𝐹𝑦 ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) )
82 60 62 64 68 81 finds2 ( 𝑣 ∈ ω → ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ( 𝐹𝑣 ) ⊆ 𝑥 ) )
83 82 com12 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ( 𝑣 ∈ ω → ( 𝐹𝑣 ) ⊆ 𝑥 ) )
84 83 ralrimiv ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → ∀ 𝑣 ∈ ω ( 𝐹𝑣 ) ⊆ 𝑥 )
85 fveq2 ( 𝑦 = 𝑣 → ( 𝐹𝑦 ) = ( 𝐹𝑣 ) )
86 85 cbviunv 𝑦 ∈ ω ( 𝐹𝑦 ) = 𝑣 ∈ ω ( 𝐹𝑣 )
87 3 86 eqtri 𝐶 = 𝑣 ∈ ω ( 𝐹𝑣 )
88 87 sseq1i ( 𝐶𝑥 𝑣 ∈ ω ( 𝐹𝑣 ) ⊆ 𝑥 )
89 iunss ( 𝑣 ∈ ω ( 𝐹𝑣 ) ⊆ 𝑥 ↔ ∀ 𝑣 ∈ ω ( 𝐹𝑣 ) ⊆ 𝑥 )
90 88 89 bitri ( 𝐶𝑥 ↔ ∀ 𝑣 ∈ ω ( 𝐹𝑣 ) ⊆ 𝑥 )
91 84 90 sylibr ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝐶𝑥 )
92 91 ax-gen 𝑥 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝐶𝑥 )
93 16 58 92 3pm3.2i ( 𝐴𝐶 ∧ Tr 𝐶 ∧ ∀ 𝑥 ( ( 𝐴𝑥 ∧ Tr 𝑥 ) → 𝐶𝑥 ) )