Step |
Hyp |
Ref |
Expression |
1 |
|
trcl.1 |
⊢ 𝐴 ∈ V |
2 |
|
trcl.2 |
⊢ 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) |
3 |
|
trcl.3 |
⊢ 𝐶 = ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) |
4 |
|
peano1 |
⊢ ∅ ∈ ω |
5 |
2
|
fveq1i |
⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) |
6 |
|
fr0g |
⊢ ( 𝐴 ∈ V → ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
7 |
1 6
|
ax-mp |
⊢ ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 |
8 |
5 7
|
eqtr2i |
⊢ 𝐴 = ( 𝐹 ‘ ∅ ) |
9 |
8
|
eqimssi |
⊢ 𝐴 ⊆ ( 𝐹 ‘ ∅ ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
11 |
10
|
sseq2d |
⊢ ( 𝑦 = ∅ → ( 𝐴 ⊆ ( 𝐹 ‘ 𝑦 ) ↔ 𝐴 ⊆ ( 𝐹 ‘ ∅ ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ 𝐴 ⊆ ( 𝐹 ‘ ∅ ) ) → ∃ 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹 ‘ 𝑦 ) ) |
13 |
4 9 12
|
mp2an |
⊢ ∃ 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹 ‘ 𝑦 ) |
14 |
|
ssiun |
⊢ ( ∃ 𝑦 ∈ ω 𝐴 ⊆ ( 𝐹 ‘ 𝑦 ) → 𝐴 ⊆ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) |
15 |
13 14
|
ax-mp |
⊢ 𝐴 ⊆ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) |
16 |
15 3
|
sseqtrri |
⊢ 𝐴 ⊆ 𝐶 |
17 |
|
dftr2 |
⊢ ( Tr ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑣 ∀ 𝑢 ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) → 𝑣 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
|
eliun |
⊢ ( 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) |
19 |
18
|
anbi2i |
⊢ ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑣 ∈ 𝑢 ∧ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ ω ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑣 ∈ 𝑢 ∧ ∃ 𝑦 ∈ ω 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
19 20
|
bitr4i |
⊢ ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ ω ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
22 |
|
elunii |
⊢ ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) → 𝑣 ∈ ∪ ( 𝐹 ‘ 𝑦 ) ) |
23 |
|
ssun2 |
⊢ ∪ ( 𝐹 ‘ 𝑦 ) ⊆ ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) |
24 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
25 |
24
|
uniex |
⊢ ∪ ( 𝐹 ‘ 𝑦 ) ∈ V |
26 |
24 25
|
unex |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ∈ V |
27 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
28 |
|
unieq |
⊢ ( 𝑥 = 𝑧 → ∪ 𝑥 = ∪ 𝑧 ) |
29 |
27 28
|
uneq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∪ ∪ 𝑥 ) = ( 𝑧 ∪ ∪ 𝑧 ) ) |
30 |
|
id |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
31 |
|
unieq |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ∪ 𝑥 = ∪ ( 𝐹 ‘ 𝑦 ) ) |
32 |
30 31
|
uneq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 ∪ ∪ 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
33 |
2 29 32
|
frsucmpt2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ∈ V ) → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
26 33
|
mpan2 |
⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
35 |
23 34
|
sseqtrrid |
⊢ ( 𝑦 ∈ ω → ∪ ( 𝐹 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ suc 𝑦 ) ) |
36 |
35
|
sseld |
⊢ ( 𝑦 ∈ ω → ( 𝑣 ∈ ∪ ( 𝐹 ‘ 𝑦 ) → 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) ) |
37 |
22 36
|
syl5 |
⊢ ( 𝑦 ∈ ω → ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) → 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) ) |
38 |
37
|
reximia |
⊢ ( ∃ 𝑦 ∈ ω ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) |
39 |
21 38
|
sylbi |
⊢ ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) |
40 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
41 |
|
fveq2 |
⊢ ( 𝑢 = suc 𝑦 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ suc 𝑦 ) ) |
42 |
41
|
eleq2d |
⊢ ( 𝑢 = suc 𝑦 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ↔ 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( suc 𝑦 ∈ ω ∧ 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) |
44 |
43
|
ex |
⊢ ( suc 𝑦 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
45 |
40 44
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
46 |
45
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) |
48 |
47
|
eleq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑢 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) |
50 |
46 49
|
sylibr |
⊢ ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) |
51 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ 𝑦 ) ) |
52 |
50 51
|
sylibr |
⊢ ( ∃ 𝑦 ∈ ω 𝑣 ∈ ( 𝐹 ‘ suc 𝑦 ) → 𝑣 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) |
53 |
39 52
|
syl |
⊢ ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) → 𝑣 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) |
54 |
53
|
ax-gen |
⊢ ∀ 𝑢 ( ( 𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) → 𝑣 ∈ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) |
55 |
17 54
|
mpgbir |
⊢ Tr ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) |
56 |
|
treq |
⊢ ( 𝐶 = ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) → ( Tr 𝐶 ↔ Tr ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) ) |
57 |
3 56
|
ax-mp |
⊢ ( Tr 𝐶 ↔ Tr ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) ) |
58 |
55 57
|
mpbir |
⊢ Tr 𝐶 |
59 |
|
fveq2 |
⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ∅ ) ) |
60 |
59
|
sseq1d |
⊢ ( 𝑣 = ∅ → ( ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ ∅ ) ⊆ 𝑥 ) ) |
61 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
62 |
61
|
sseq1d |
⊢ ( 𝑣 = 𝑦 → ( ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑣 = suc 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑦 ) ) |
64 |
63
|
sseq1d |
⊢ ( 𝑣 = suc 𝑦 → ( ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ↔ ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) |
65 |
5 7
|
eqtri |
⊢ ( 𝐹 ‘ ∅ ) = 𝐴 |
66 |
65
|
sseq1i |
⊢ ( ( 𝐹 ‘ ∅ ) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) |
67 |
66
|
biimpri |
⊢ ( 𝐴 ⊆ 𝑥 → ( 𝐹 ‘ ∅ ) ⊆ 𝑥 ) |
68 |
67
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐹 ‘ ∅ ) ⊆ 𝑥 ) |
69 |
|
uniss |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ∪ ( 𝐹 ‘ 𝑦 ) ⊆ ∪ 𝑥 ) |
70 |
|
df-tr |
⊢ ( Tr 𝑥 ↔ ∪ 𝑥 ⊆ 𝑥 ) |
71 |
|
sstr2 |
⊢ ( ∪ ( 𝐹 ‘ 𝑦 ) ⊆ ∪ 𝑥 → ( ∪ 𝑥 ⊆ 𝑥 → ∪ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ) |
72 |
70 71
|
syl5bi |
⊢ ( ∪ ( 𝐹 ‘ 𝑦 ) ⊆ ∪ 𝑥 → ( Tr 𝑥 → ∪ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ) |
73 |
69 72
|
syl |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ∪ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ) |
74 |
73
|
anc2li |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ∧ ∪ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ) ) |
75 |
|
unss |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ∧ ∪ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ 𝑥 ) |
76 |
74 75
|
syl6ib |
⊢ ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ 𝑥 ) ) |
77 |
34
|
sseq1d |
⊢ ( 𝑦 ∈ ω → ( ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ↔ ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ 𝑥 ) ) |
78 |
77
|
biimprd |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐹 ‘ 𝑦 ) ∪ ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) |
79 |
76 78
|
syl9r |
⊢ ( 𝑦 ∈ ω → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( Tr 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) ) |
80 |
79
|
com23 |
⊢ ( 𝑦 ∈ ω → ( Tr 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) ) |
81 |
80
|
adantld |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑥 → ( 𝐹 ‘ suc 𝑦 ) ⊆ 𝑥 ) ) ) |
82 |
60 62 64 68 81
|
finds2 |
⊢ ( 𝑣 ∈ ω → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) ) |
83 |
82
|
com12 |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝑣 ∈ ω → ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) ) |
84 |
83
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∀ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
85 |
|
fveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑣 ) ) |
86 |
85
|
cbviunv |
⊢ ∪ 𝑦 ∈ ω ( 𝐹 ‘ 𝑦 ) = ∪ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) |
87 |
3 86
|
eqtri |
⊢ 𝐶 = ∪ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) |
88 |
87
|
sseq1i |
⊢ ( 𝐶 ⊆ 𝑥 ↔ ∪ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
89 |
|
iunss |
⊢ ( ∪ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ↔ ∀ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
90 |
88 89
|
bitri |
⊢ ( 𝐶 ⊆ 𝑥 ↔ ∀ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
91 |
84 90
|
sylibr |
⊢ ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐶 ⊆ 𝑥 ) |
92 |
91
|
ax-gen |
⊢ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐶 ⊆ 𝑥 ) |
93 |
16 58 92
|
3pm3.2i |
⊢ ( 𝐴 ⊆ 𝐶 ∧ Tr 𝐶 ∧ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → 𝐶 ⊆ 𝑥 ) ) |