Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
2 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( TC ‘ 𝑎 ) = ( TC ‘ 𝐴 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑈 ‘ 𝑎 ) = ( 𝑈 ‘ 𝐴 ) ) |
4 |
3
|
rneqd |
⊢ ( 𝑎 = 𝐴 → ran ( 𝑈 ‘ 𝑎 ) = ran ( 𝑈 ‘ 𝐴 ) ) |
5 |
4
|
unieqd |
⊢ ( 𝑎 = 𝐴 → ∪ ran ( 𝑈 ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( TC ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) ) |
7 |
1
|
ituni0 |
⊢ ( 𝑎 ∈ V → ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 ) |
8 |
7
|
elv |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 |
9 |
|
fvssunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
10 |
8 9
|
eqsstrri |
⊢ 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
11 |
|
dftr3 |
⊢ ( Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∀ 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
12 |
|
vex |
⊢ 𝑎 ∈ V |
13 |
1
|
itunifn |
⊢ ( 𝑎 ∈ V → ( 𝑈 ‘ 𝑎 ) Fn ω ) |
14 |
|
fnunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) ) |
15 |
12 13 14
|
mp2b |
⊢ ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
16 |
|
elssuni |
⊢ ( 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
17 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
18 |
|
fvssunirn |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
19 |
17 18
|
eqsstrri |
⊢ ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
20 |
16 19
|
sstrdi |
⊢ ( 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
21 |
20
|
rexlimivw |
⊢ ( ∃ 𝑐 ∈ ω 𝑏 ∈ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
22 |
15 21
|
sylbi |
⊢ ( 𝑏 ∈ ∪ ran ( 𝑈 ‘ 𝑎 ) → 𝑏 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
23 |
11 22
|
mprgbir |
⊢ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) |
24 |
|
tcmin |
⊢ ( 𝑎 ∈ V → ( ( 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ∧ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ) → ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) ) |
25 |
24
|
elv |
⊢ ( ( 𝑎 ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ∧ Tr ∪ ran ( 𝑈 ‘ 𝑎 ) ) → ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) ) |
26 |
10 23 25
|
mp2an |
⊢ ( TC ‘ 𝑎 ) ⊆ ∪ ran ( 𝑈 ‘ 𝑎 ) |
27 |
|
unissb |
⊢ ( ∪ ran ( 𝑈 ‘ 𝑎 ) ⊆ ( TC ‘ 𝑎 ) ↔ ∀ 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
28 |
|
fvelrnb |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 ) ) |
29 |
12 13 28
|
mp2b |
⊢ ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) ↔ ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 ) |
30 |
1
|
itunitc1 |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) |
31 |
30
|
a1i |
⊢ ( 𝑐 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ) |
32 |
|
sseq1 |
⊢ ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ⊆ ( TC ‘ 𝑎 ) ↔ 𝑏 ⊆ ( TC ‘ 𝑎 ) ) ) |
33 |
31 32
|
syl5ibcom |
⊢ ( 𝑐 ∈ ω → ( ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) ) |
34 |
33
|
rexlimiv |
⊢ ( ∃ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = 𝑏 → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
35 |
29 34
|
sylbi |
⊢ ( 𝑏 ∈ ran ( 𝑈 ‘ 𝑎 ) → 𝑏 ⊆ ( TC ‘ 𝑎 ) ) |
36 |
27 35
|
mprgbir |
⊢ ∪ ran ( 𝑈 ‘ 𝑎 ) ⊆ ( TC ‘ 𝑎 ) |
37 |
26 36
|
eqssi |
⊢ ( TC ‘ 𝑎 ) = ∪ ran ( 𝑈 ‘ 𝑎 ) |
38 |
6 37
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
39 |
|
rn0 |
⊢ ran ∅ = ∅ |
40 |
39
|
unieqi |
⊢ ∪ ran ∅ = ∪ ∅ |
41 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
42 |
40 41
|
eqtr2i |
⊢ ∅ = ∪ ran ∅ |
43 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∅ ) |
44 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑈 ‘ 𝐴 ) = ∅ ) |
45 |
44
|
rneqd |
⊢ ( ¬ 𝐴 ∈ V → ran ( 𝑈 ‘ 𝐴 ) = ran ∅ ) |
46 |
45
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ ran ( 𝑈 ‘ 𝐴 ) = ∪ ran ∅ ) |
47 |
42 43 46
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) ) |
48 |
38 47
|
pm2.61i |
⊢ ( TC ‘ 𝐴 ) = ∪ ran ( 𝑈 ‘ 𝐴 ) |