Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iun0 | Unicode version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3788 | . . . . . 6 | |
2 | 1 | a1i 11 | . . . . 5 |
3 | 2 | nrex 2912 | . . . 4 |
4 | eliun 4335 | . . . 4 | |
5 | 3, 4 | mtbir 299 | . . 3 |
6 | 5, 1 | 2false 350 | . 2 |
7 | 6 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
e. wcel 1818 E. wrex 2808 c0 3784 U_ ciun 4330 |
This theorem is referenced by: iununi 4415 funiunfv 6160 om0r 7208 kmlem11 8561 ituniiun 8823 voliunlem1 21960 ofpreima2 27508 sigaclfu2 28121 measvunilem0 28184 measvuni 28185 cvmscld 28718 trpred0 29319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 df-iun 4332 |
Copyright terms: Public domain | W3C validator |