Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iununi | Unicode version |
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iununi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2654 | . . . . . . 7 | |
2 | iunconst 4339 | . . . . . . 7 | |
3 | 1, 2 | sylbir 213 | . . . . . 6 |
4 | iun0 4386 | . . . . . . 7 | |
5 | id 22 | . . . . . . . 8 | |
6 | 5 | iuneq2d 4357 | . . . . . . 7 |
7 | 4, 6, 5 | 3eqtr4a 2524 | . . . . . 6 |
8 | 3, 7 | ja 161 | . . . . 5 |
9 | 8 | eqcomd 2465 | . . . 4 |
10 | 9 | uneq1d 3656 | . . 3 |
11 | uniiun 4383 | . . . 4 | |
12 | 11 | uneq2i 3654 | . . 3 |
13 | iunun 4411 | . . 3 | |
14 | 10, 12, 13 | 3eqtr4g 2523 | . 2 |
15 | unieq 4257 | . . . . . . 7 | |
16 | uni0 4276 | . . . . . . 7 | |
17 | 15, 16 | syl6eq 2514 | . . . . . 6 |
18 | 17 | uneq2d 3657 | . . . . 5 |
19 | un0 3810 | . . . . 5 | |
20 | 18, 19 | syl6eq 2514 | . . . 4 |
21 | iuneq1 4344 | . . . . 5 | |
22 | 0iun 4387 | . . . . 5 | |
23 | 21, 22 | syl6eq 2514 | . . . 4 |
24 | 20, 23 | eqeq12d 2479 | . . 3 |
25 | 24 | biimpcd 224 | . 2 |
26 | 14, 25 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 =/= wne 2652
u. cun 3473 c0 3784 U. cuni 4249 U_ ciun 4330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-iun 4332 |
Copyright terms: Public domain | W3C validator |