Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
2 |
|
fveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝑈 ‘ 𝑏 ) = ( 𝑈 ‘ 𝐴 ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ( ( 𝑈 ‘ 𝐴 ) ‘ suc 𝐵 ) ) |
4 |
|
iuneq1 |
⊢ ( 𝑏 = 𝐴 → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∪ 𝑎 ∈ 𝐴 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
5 |
3 4
|
eqeq12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ↔ ( ( 𝑈 ‘ 𝐴 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝐴 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) ) |
6 |
|
suceq |
⊢ ( 𝑑 = ∅ → suc 𝑑 = suc ∅ ) |
7 |
6
|
fveq2d |
⊢ ( 𝑑 = ∅ → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ( ( 𝑈 ‘ 𝑏 ) ‘ suc ∅ ) ) |
8 |
|
fveq2 |
⊢ ( 𝑑 = ∅ → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ) |
9 |
8
|
iuneq2d |
⊢ ( 𝑑 = ∅ → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑑 = ∅ → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) ↔ ( ( 𝑈 ‘ 𝑏 ) ‘ suc ∅ ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) ) ) |
11 |
|
suceq |
⊢ ( 𝑑 = 𝑐 → suc 𝑑 = suc 𝑐 ) |
12 |
11
|
fveq2d |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑑 = 𝑐 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
14 |
13
|
iuneq2d |
⊢ ( 𝑑 = 𝑐 → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑑 = 𝑐 → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) ↔ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) ) |
16 |
|
suceq |
⊢ ( 𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐 ) |
17 |
16
|
fveq2d |
⊢ ( 𝑑 = suc 𝑐 → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ( ( 𝑈 ‘ 𝑏 ) ‘ suc suc 𝑐 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑑 = suc 𝑐 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) |
19 |
18
|
iuneq2d |
⊢ ( 𝑑 = suc 𝑐 → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑑 = suc 𝑐 → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) ↔ ( ( 𝑈 ‘ 𝑏 ) ‘ suc suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) ) |
21 |
|
suceq |
⊢ ( 𝑑 = 𝐵 → suc 𝑑 = suc 𝐵 ) |
22 |
21
|
fveq2d |
⊢ ( 𝑑 = 𝐵 → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑑 = 𝐵 → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
24 |
23
|
iuneq2d |
⊢ ( 𝑑 = 𝐵 → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑑 = 𝐵 → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑑 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑑 ) ↔ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) ) |
26 |
|
uniiun |
⊢ ∪ 𝑏 = ∪ 𝑎 ∈ 𝑏 𝑎 |
27 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ suc ∅ ) = ∪ ( ( 𝑈 ‘ 𝑏 ) ‘ ∅ ) |
28 |
1
|
ituni0 |
⊢ ( 𝑏 ∈ V → ( ( 𝑈 ‘ 𝑏 ) ‘ ∅ ) = 𝑏 ) |
29 |
28
|
elv |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ ∅ ) = 𝑏 |
30 |
29
|
unieqi |
⊢ ∪ ( ( 𝑈 ‘ 𝑏 ) ‘ ∅ ) = ∪ 𝑏 |
31 |
27 30
|
eqtri |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ suc ∅ ) = ∪ 𝑏 |
32 |
1
|
ituni0 |
⊢ ( 𝑎 ∈ 𝑏 → ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = 𝑎 ) |
33 |
32
|
iuneq2i |
⊢ ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) = ∪ 𝑎 ∈ 𝑏 𝑎 |
34 |
26 31 33
|
3eqtr4i |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ suc ∅ ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ ∅ ) |
35 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ suc suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) |
36 |
|
unieq |
⊢ ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → ∪ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
37 |
1
|
itunisuc |
⊢ ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
38 |
37
|
a1i |
⊢ ( 𝑎 ∈ 𝑏 → ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) ) |
39 |
38
|
iuneq2i |
⊢ ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
40 |
|
iuncom4 |
⊢ ∪ 𝑎 ∈ 𝑏 ∪ ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = ∪ ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) |
41 |
39 40
|
eqtr2i |
⊢ ∪ ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) |
42 |
36 41
|
eqtrdi |
⊢ ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → ∪ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) |
43 |
35 42
|
eqtrid |
⊢ ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → ( ( 𝑈 ‘ 𝑏 ) ‘ suc suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) |
44 |
43
|
a1i |
⊢ ( 𝑐 ∈ ω → ( ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝑐 ) → ( ( 𝑈 ‘ 𝑏 ) ‘ suc suc 𝑐 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ suc 𝑐 ) ) ) |
45 |
10 15 20 25 34 44
|
finds |
⊢ ( 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
46 |
|
iun0 |
⊢ ∪ 𝑎 ∈ 𝑏 ∅ = ∅ |
47 |
46
|
eqcomi |
⊢ ∅ = ∪ 𝑎 ∈ 𝑏 ∅ |
48 |
|
peano2b |
⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ ω ) |
49 |
|
vex |
⊢ 𝑏 ∈ V |
50 |
1
|
itunifn |
⊢ ( 𝑏 ∈ V → ( 𝑈 ‘ 𝑏 ) Fn ω ) |
51 |
|
fndm |
⊢ ( ( 𝑈 ‘ 𝑏 ) Fn ω → dom ( 𝑈 ‘ 𝑏 ) = ω ) |
52 |
49 50 51
|
mp2b |
⊢ dom ( 𝑈 ‘ 𝑏 ) = ω |
53 |
52
|
eleq2i |
⊢ ( suc 𝐵 ∈ dom ( 𝑈 ‘ 𝑏 ) ↔ suc 𝐵 ∈ ω ) |
54 |
48 53
|
bitr4i |
⊢ ( 𝐵 ∈ ω ↔ suc 𝐵 ∈ dom ( 𝑈 ‘ 𝑏 ) ) |
55 |
|
ndmfv |
⊢ ( ¬ suc 𝐵 ∈ dom ( 𝑈 ‘ 𝑏 ) → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∅ ) |
56 |
54 55
|
sylnbi |
⊢ ( ¬ 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∅ ) |
57 |
|
vex |
⊢ 𝑎 ∈ V |
58 |
1
|
itunifn |
⊢ ( 𝑎 ∈ V → ( 𝑈 ‘ 𝑎 ) Fn ω ) |
59 |
|
fndm |
⊢ ( ( 𝑈 ‘ 𝑎 ) Fn ω → dom ( 𝑈 ‘ 𝑎 ) = ω ) |
60 |
57 58 59
|
mp2b |
⊢ dom ( 𝑈 ‘ 𝑎 ) = ω |
61 |
60
|
eleq2i |
⊢ ( 𝐵 ∈ dom ( 𝑈 ‘ 𝑎 ) ↔ 𝐵 ∈ ω ) |
62 |
|
ndmfv |
⊢ ( ¬ 𝐵 ∈ dom ( 𝑈 ‘ 𝑎 ) → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∅ ) |
63 |
61 62
|
sylnbir |
⊢ ( ¬ 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∅ ) |
64 |
63
|
iuneq2d |
⊢ ( ¬ 𝐵 ∈ ω → ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ∅ ) |
65 |
47 56 64
|
3eqtr4a |
⊢ ( ¬ 𝐵 ∈ ω → ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |
66 |
45 65
|
pm2.61i |
⊢ ( ( 𝑈 ‘ 𝑏 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝑏 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) |
67 |
5 66
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑈 ‘ 𝐴 ) ‘ suc 𝐵 ) = ∪ 𝑎 ∈ 𝐴 ( ( 𝑈 ‘ 𝑎 ) ‘ 𝐵 ) ) |