Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunrab | Unicode version |
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
iunrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunab 4376 | . 2 | |
2 | df-rab 2816 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | 3 | iuneq2i 4349 | . 2 |
5 | df-rab 2816 | . . 3 | |
6 | r19.42v 3012 | . . . 4 | |
7 | 6 | abbii 2591 | . . 3 |
8 | 5, 7 | eqtr4i 2489 | . 2 |
9 | 1, 4, 8 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 E. wrex 2808
{ crab 2811 U_ ciun 4330 |
This theorem is referenced by: incexc2 13650 itg2monolem1 22157 aannenlem1 22724 musum 23467 lgsquadlem1 23629 lgsquadlem2 23630 iunpreima 27432 cnambfre 30063 fiphp3d 30753 phisum 31159 mapdval3N 37358 mapdval5N 37360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-in 3482 df-ss 3489 df-iun 4332 |
Copyright terms: Public domain | W3C validator |