Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > incexc2 | Unicode version |
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.) |
Ref | Expression |
---|---|
incexc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incexc 13649 | . . 3 | |
2 | hashcl 12428 | . . . . . . . . . . . 12 | |
3 | 2 | ad2antrr 725 | . . . . . . . . . . 11 |
4 | 3 | nn0zd 10992 | . . . . . . . . . 10 |
5 | simpl 457 | . . . . . . . . . . . 12 | |
6 | elpwi 4021 | . . . . . . . . . . . 12 | |
7 | ssdomg 7581 | . . . . . . . . . . . . 13 | |
8 | 7 | imp 429 | . . . . . . . . . . . 12 |
9 | 5, 6, 8 | syl2an 477 | . . . . . . . . . . 11 |
10 | hashdomi 12448 | . . . . . . . . . . 11 | |
11 | 9, 10 | syl 16 | . . . . . . . . . 10 |
12 | fznn 11776 | . . . . . . . . . . 11 | |
13 | 12 | rbaibd 910 | . . . . . . . . . 10 |
14 | 4, 11, 13 | syl2anc 661 | . . . . . . . . 9 |
15 | ssfi 7760 | . . . . . . . . . . 11 | |
16 | 5, 6, 15 | syl2an 477 | . . . . . . . . . 10 |
17 | hashnncl 12436 | . . . . . . . . . 10 | |
18 | 16, 17 | syl 16 | . . . . . . . . 9 |
19 | 14, 18 | bitr2d 254 | . . . . . . . 8 |
20 | df-ne 2654 | . . . . . . . 8 | |
21 | risset 2982 | . . . . . . . 8 | |
22 | 19, 20, 21 | 3bitr3g 287 | . . . . . . 7 |
23 | elsn 4043 | . . . . . . . 8 | |
24 | 23 | notbii 296 | . . . . . . 7 |
25 | eqcom 2466 | . . . . . . . 8 | |
26 | 25 | rexbii 2959 | . . . . . . 7 |
27 | 22, 24, 26 | 3bitr4g 288 | . . . . . 6 |
28 | 27 | rabbidva 3100 | . . . . 5 |
29 | dfdif2 3484 | . . . . 5 | |
30 | iunrab 4377 | . . . . 5 | |
31 | 28, 29, 30 | 3eqtr4g 2523 | . . . 4 |
32 | 31 | sumeq1d 13523 | . . 3 |
33 | 1, 32 | eqtrd 2498 | . 2 |
34 | fzfid 12083 | . . 3 | |
35 | simpll 753 | . . . . 5 | |
36 | pwfi 7835 | . . . . 5 | |
37 | 35, 36 | sylib 196 | . . . 4 |
38 | ssrab2 3584 | . . . 4 | |
39 | ssfi 7760 | . . . 4 | |
40 | 37, 38, 39 | sylancl 662 | . . 3 |
41 | fveq2 5871 | . . . . . . . . . 10 | |
42 | 41 | eqeq1d 2459 | . . . . . . . . 9 |
43 | 42 | elrab 3257 | . . . . . . . 8 |
44 | 43 | simprbi 464 | . . . . . . 7 |
45 | 44 | adantl 466 | . . . . . 6 |
46 | 45 | ralrimiva 2871 | . . . . 5 |
47 | 46 | ralrimiva 2871 | . . . 4 |
48 | invdisj 4441 | . . . 4 | |
49 | 47, 48 | syl 16 | . . 3 |
50 | 45 | oveq1d 6311 | . . . . . . 7 |
51 | 50 | oveq2d 6312 | . . . . . 6 |
52 | 51 | oveq1d 6311 | . . . . 5 |
53 | 1cnd 9633 | . . . . . . . . 9 | |
54 | 53 | negcld 9941 | . . . . . . . 8 |
55 | elfznn 11743 | . . . . . . . . . 10 | |
56 | 55 | adantl 466 | . . . . . . . . 9 |
57 | nnm1nn0 10862 | . . . . . . . . 9 | |
58 | 56, 57 | syl 16 | . . . . . . . 8 |
59 | 54, 58 | expcld 12310 | . . . . . . 7 |
60 | 59 | adantr 465 | . . . . . 6 |
61 | unifi 7829 | . . . . . . . . . 10 | |
62 | 61 | ad2antrr 725 | . . . . . . . . 9 |
63 | 56 | adantr 465 | . . . . . . . . . . . . 13 |
64 | 45, 63 | eqeltrd 2545 | . . . . . . . . . . . 12 |
65 | 35 | adantr 465 | . . . . . . . . . . . . . 14 |
66 | elrabi 3254 | . . . . . . . . . . . . . . . 16 | |
67 | 66 | adantl 466 | . . . . . . . . . . . . . . 15 |
68 | elpwi 4021 | . . . . . . . . . . . . . . 15 | |
69 | 67, 68 | syl 16 | . . . . . . . . . . . . . 14 |
70 | ssfi 7760 | . . . . . . . . . . . . . 14 | |
71 | 65, 69, 70 | syl2anc 661 | . . . . . . . . . . . . 13 |
72 | hashnncl 12436 | . . . . . . . . . . . . 13 | |
73 | 71, 72 | syl 16 | . . . . . . . . . . . 12 |
74 | 64, 73 | mpbid 210 | . . . . . . . . . . 11 |
75 | intssuni 4309 | . . . . . . . . . . 11 | |
76 | 74, 75 | syl 16 | . . . . . . . . . 10 |
77 | 69 | unissd 4273 | . . . . . . . . . 10 |
78 | 76, 77 | sstrd 3513 | . . . . . . . . 9 |
79 | ssfi 7760 | . . . . . . . . 9 | |
80 | 62, 78, 79 | syl2anc 661 | . . . . . . . 8 |
81 | hashcl 12428 | . . . . . . . 8 | |
82 | 80, 81 | syl 16 | . . . . . . 7 |
83 | 82 | nn0cnd 10879 | . . . . . 6 |
84 | 60, 83 | mulcld 9637 | . . . . 5 |
85 | 52, 84 | eqeltrd 2545 | . . . 4 |
86 | 85 | anasss 647 | . . 3 |
87 | 34, 40, 49, 86 | fsumiun 13635 | . 2 |
88 | 52 | sumeq2dv 13525 | . . . 4 |
89 | 40, 59, 83 | fsummulc2 13599 | . . . 4 |
90 | 88, 89 | eqtr4d 2501 | . . 3 |
91 | 90 | sumeq2dv 13525 | . 2 |
92 | 33, 87, 91 | 3eqtrd 2502 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 { crab 2811 \ cdif 3472
C_ wss 3475 c0 3784 ~P cpw 4012 { csn 4029
U. cuni 4249 |^| cint 4286 U_ ciun 4330
Disj_ wdisj 4422 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cdom 7534 cfn 7536 cc 9511 1 c1 9514 cmul 9518 cle 9650 cmin 9828 -u cneg 9829 cn 10561 cn0 10820
cz 10889 cfz 11701 cexp 12166 chash 12405 sum_ csu 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-disj 4423 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |