Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > incexc | Unicode version |
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. This is Metamath 100 proof #96. (Contributed by Mario Carneiro, 7-Aug-2017.) |
Ref | Expression |
---|---|
incexc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unifi 7829 | . . 3 | |
2 | hashcl 12428 | . . . 4 | |
3 | 2 | nn0cnd 10879 | . . 3 |
4 | 1, 3 | syl 16 | . 2 |
5 | simpl 457 | . . . . 5 | |
6 | pwfi 7835 | . . . . 5 | |
7 | 5, 6 | sylib 196 | . . . 4 |
8 | diffi 7771 | . . . 4 | |
9 | 7, 8 | syl 16 | . . 3 |
10 | 1cnd 9633 | . . . . . 6 | |
11 | 10 | negcld 9941 | . . . . 5 |
12 | eldifsni 4156 | . . . . . . . 8 | |
13 | 12 | adantl 466 | . . . . . . 7 |
14 | eldifi 3625 | . . . . . . . . . 10 | |
15 | elpwi 4021 | . . . . . . . . . 10 | |
16 | 14, 15 | syl 16 | . . . . . . . . 9 |
17 | ssfi 7760 | . . . . . . . . 9 | |
18 | 5, 16, 17 | syl2an 477 | . . . . . . . 8 |
19 | hashnncl 12436 | . . . . . . . 8 | |
20 | 18, 19 | syl 16 | . . . . . . 7 |
21 | 13, 20 | mpbird 232 | . . . . . 6 |
22 | nnm1nn0 10862 | . . . . . 6 | |
23 | 21, 22 | syl 16 | . . . . 5 |
24 | 11, 23 | expcld 12310 | . . . 4 |
25 | 16 | adantl 466 | . . . . . . . . 9 |
26 | simplr 755 | . . . . . . . . 9 | |
27 | 25, 26 | sstrd 3513 | . . . . . . . 8 |
28 | unifi 7829 | . . . . . . . 8 | |
29 | 18, 27, 28 | syl2anc 661 | . . . . . . 7 |
30 | intssuni 4309 | . . . . . . . 8 | |
31 | 13, 30 | syl 16 | . . . . . . 7 |
32 | ssfi 7760 | . . . . . . 7 | |
33 | 29, 31, 32 | syl2anc 661 | . . . . . 6 |
34 | hashcl 12428 | . . . . . 6 | |
35 | 33, 34 | syl 16 | . . . . 5 |
36 | 35 | nn0cnd 10879 | . . . 4 |
37 | 24, 36 | mulcld 9637 | . . 3 |
38 | 9, 37 | fsumcl 13555 | . 2 |
39 | disjdif 3900 | . . . . 5 | |
40 | 39 | a1i 11 | . . . 4 |
41 | 0elpw 4621 | . . . . . . . 8 | |
42 | snssi 4174 | . . . . . . . 8 | |
43 | 41, 42 | ax-mp 5 | . . . . . . 7 |
44 | undif 3908 | . . . . . . 7 | |
45 | 43, 44 | mpbi 208 | . . . . . 6 |
46 | 45 | eqcomi 2470 | . . . . 5 |
47 | 46 | a1i 11 | . . . 4 |
48 | 1cnd 9633 | . . . . . . 7 | |
49 | 48 | negcld 9941 | . . . . . 6 |
50 | 5, 15, 17 | syl2an 477 | . . . . . . 7 |
51 | hashcl 12428 | . . . . . . 7 | |
52 | 50, 51 | syl 16 | . . . . . 6 |
53 | 49, 52 | expcld 12310 | . . . . 5 |
54 | 1 | adantr 465 | . . . . . . . 8 |
55 | inss1 3717 | . . . . . . . 8 | |
56 | ssfi 7760 | . . . . . . . 8 | |
57 | 54, 55, 56 | sylancl 662 | . . . . . . 7 |
58 | hashcl 12428 | . . . . . . 7 | |
59 | 57, 58 | syl 16 | . . . . . 6 |
60 | 59 | nn0cnd 10879 | . . . . 5 |
61 | 53, 60 | mulcld 9637 | . . . 4 |
62 | 40, 47, 7, 61 | fsumsplit 13562 | . . 3 |
63 | inidm 3706 | . . . . . . 7 | |
64 | 63 | fveq2i 5874 | . . . . . 6 |
65 | 64 | oveq2i 6307 | . . . . 5 |
66 | 4 | subidd 9942 | . . . . 5 |
67 | 65, 66 | syl5eq 2510 | . . . 4 |
68 | incexclem 13648 | . . . . 5 | |
69 | 1, 68 | syldan 470 | . . . 4 |
70 | 67, 69 | eqtr3d 2500 | . . 3 |
71 | 4, 38 | negsubd 9960 | . . . 4 |
72 | 0ex 4582 | . . . . . . 7 | |
73 | 1cnd 9633 | . . . . . . . 8 | |
74 | 73, 4 | mulcld 9637 | . . . . . . 7 |
75 | fveq2 5871 | . . . . . . . . . . . 12 | |
76 | hash0 12437 | . . . . . . . . . . . 12 | |
77 | 75, 76 | syl6eq 2514 | . . . . . . . . . . 11 |
78 | 77 | oveq2d 6312 | . . . . . . . . . 10 |
79 | neg1cn 10664 | . . . . . . . . . . 11 | |
80 | exp0 12170 | . . . . . . . . . . 11 | |
81 | 79, 80 | ax-mp 5 | . . . . . . . . . 10 |
82 | 78, 81 | syl6eq 2514 | . . . . . . . . 9 |
83 | rint0 4327 | . . . . . . . . . 10 | |
84 | 83 | fveq2d 5875 | . . . . . . . . 9 |
85 | 82, 84 | oveq12d 6314 | . . . . . . . 8 |
86 | 85 | sumsn 13563 | . . . . . . 7 |
87 | 72, 74, 86 | sylancr 663 | . . . . . 6 |
88 | 4 | mulid2d 9635 | . . . . . 6 |
89 | 87, 88 | eqtr2d 2499 | . . . . 5 |
90 | 9, 37 | fsumneg 13602 | . . . . . 6 |
91 | expm1t 12194 | . . . . . . . . . . 11 | |
92 | 11, 21, 91 | syl2anc 661 | . . . . . . . . . 10 |
93 | 24, 11 | mulcomd 9638 | . . . . . . . . . 10 |
94 | 24 | mulm1d 10033 | . . . . . . . . . 10 |
95 | 92, 93, 94 | 3eqtrd 2502 | . . . . . . . . 9 |
96 | 25 | unissd 4273 | . . . . . . . . . . . 12 |
97 | 31, 96 | sstrd 3513 | . . . . . . . . . . 11 |
98 | dfss1 3702 | . . . . . . . . . . 11 | |
99 | 97, 98 | sylib 196 | . . . . . . . . . 10 |
100 | 99 | fveq2d 5875 | . . . . . . . . 9 |
101 | 95, 100 | oveq12d 6314 | . . . . . . . 8 |
102 | 24, 36 | mulneg1d 10034 | . . . . . . . 8 |
103 | 101, 102 | eqtr2d 2499 | . . . . . . 7 |
104 | 103 | sumeq2dv 13525 | . . . . . 6 |
105 | 90, 104 | eqtr3d 2500 | . . . . 5 |
106 | 89, 105 | oveq12d 6314 | . . . 4 |
107 | 71, 106 | eqtr3d 2500 | . . 3 |
108 | 62, 70, 107 | 3eqtr4rd 2509 | . 2 |
109 | 4, 38, 108 | subeq0d 9962 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 ~P cpw 4012 { csn 4029
U. cuni 4249 |^| cint 4286 ` cfv 5593
(class class class)co 6296 cfn 7536 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 cn 10561 cn0 10820
cexp 12166 chash 12405 sum_ csu 13508 |
This theorem is referenced by: incexc2 13650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |