Step |
Hyp |
Ref |
Expression |
1 |
|
unifi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ∪ 𝐴 ∈ Fin ) |
2 |
|
hashcl |
⊢ ( ∪ 𝐴 ∈ Fin → ( ♯ ‘ ∪ 𝐴 ) ∈ ℕ0 ) |
3 |
2
|
nn0cnd |
⊢ ( ∪ 𝐴 ∈ Fin → ( ♯ ‘ ∪ 𝐴 ) ∈ ℂ ) |
4 |
1 3
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ♯ ‘ ∪ 𝐴 ) ∈ ℂ ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 𝐴 ∈ Fin ) |
6 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 𝒫 𝐴 ∈ Fin ) |
8 |
|
diffi |
⊢ ( 𝒫 𝐴 ∈ Fin → ( 𝒫 𝐴 ∖ { ∅ } ) ∈ Fin ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( 𝒫 𝐴 ∖ { ∅ } ) ∈ Fin ) |
10 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 1 ∈ ℂ ) |
11 |
10
|
negcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → - 1 ∈ ℂ ) |
12 |
|
eldifsni |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑠 ≠ ∅ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑠 ≠ ∅ ) |
14 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑠 ∈ 𝒫 𝐴 ) |
15 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝐴 → 𝑠 ⊆ 𝐴 ) |
16 |
14 15
|
syl |
⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝑠 ⊆ 𝐴 ) |
17 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑠 ⊆ 𝐴 ) → 𝑠 ∈ Fin ) |
18 |
5 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑠 ∈ Fin ) |
19 |
|
hashnncl |
⊢ ( 𝑠 ∈ Fin → ( ( ♯ ‘ 𝑠 ) ∈ ℕ ↔ 𝑠 ≠ ∅ ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( ♯ ‘ 𝑠 ) ∈ ℕ ↔ 𝑠 ≠ ∅ ) ) |
21 |
13 20
|
mpbird |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ ) |
22 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑠 ) ∈ ℕ → ( ( ♯ ‘ 𝑠 ) − 1 ) ∈ ℕ0 ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( ♯ ‘ 𝑠 ) − 1 ) ∈ ℕ0 ) |
24 |
11 23
|
expcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) ∈ ℂ ) |
25 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑠 ⊆ 𝐴 ) |
26 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝐴 ⊆ Fin ) |
27 |
25 26
|
sstrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑠 ⊆ Fin ) |
28 |
|
unifi |
⊢ ( ( 𝑠 ∈ Fin ∧ 𝑠 ⊆ Fin ) → ∪ 𝑠 ∈ Fin ) |
29 |
18 27 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∪ 𝑠 ∈ Fin ) |
30 |
|
intssuni |
⊢ ( 𝑠 ≠ ∅ → ∩ 𝑠 ⊆ ∪ 𝑠 ) |
31 |
13 30
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∩ 𝑠 ⊆ ∪ 𝑠 ) |
32 |
29 31
|
ssfid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∩ 𝑠 ∈ Fin ) |
33 |
|
hashcl |
⊢ ( ∩ 𝑠 ∈ Fin → ( ♯ ‘ ∩ 𝑠 ) ∈ ℕ0 ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ♯ ‘ ∩ 𝑠 ) ∈ ℕ0 ) |
35 |
34
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ♯ ‘ ∩ 𝑠 ) ∈ ℂ ) |
36 |
24 35
|
mulcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ∈ ℂ ) |
37 |
9 36
|
fsumcl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ∈ ℂ ) |
38 |
|
disjdif |
⊢ ( { ∅ } ∩ ( 𝒫 𝐴 ∖ { ∅ } ) ) = ∅ |
39 |
38
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( { ∅ } ∩ ( 𝒫 𝐴 ∖ { ∅ } ) ) = ∅ ) |
40 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
41 |
|
snssi |
⊢ ( ∅ ∈ 𝒫 𝐴 → { ∅ } ⊆ 𝒫 𝐴 ) |
42 |
40 41
|
ax-mp |
⊢ { ∅ } ⊆ 𝒫 𝐴 |
43 |
|
undif |
⊢ ( { ∅ } ⊆ 𝒫 𝐴 ↔ ( { ∅ } ∪ ( 𝒫 𝐴 ∖ { ∅ } ) ) = 𝒫 𝐴 ) |
44 |
42 43
|
mpbi |
⊢ ( { ∅ } ∪ ( 𝒫 𝐴 ∖ { ∅ } ) ) = 𝒫 𝐴 |
45 |
44
|
eqcomi |
⊢ 𝒫 𝐴 = ( { ∅ } ∪ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
46 |
45
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 𝒫 𝐴 = ( { ∅ } ∪ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) |
47 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → 1 ∈ ℂ ) |
48 |
47
|
negcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → - 1 ∈ ℂ ) |
49 |
5 15 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → 𝑠 ∈ Fin ) |
50 |
|
hashcl |
⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
51 |
49 50
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
52 |
48 51
|
expcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ∈ ℂ ) |
53 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ∪ 𝐴 ∈ Fin ) |
54 |
|
inss1 |
⊢ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ⊆ ∪ 𝐴 |
55 |
|
ssfi |
⊢ ( ( ∪ 𝐴 ∈ Fin ∧ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ⊆ ∪ 𝐴 ) → ( ∪ 𝐴 ∩ ∩ 𝑠 ) ∈ Fin ) |
56 |
53 54 55
|
sylancl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ∪ 𝐴 ∩ ∩ 𝑠 ) ∈ Fin ) |
57 |
|
hashcl |
⊢ ( ( ∪ 𝐴 ∩ ∩ 𝑠 ) ∈ Fin → ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
58 |
56 57
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
59 |
58
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ∈ ℂ ) |
60 |
52 59
|
mulcld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
61 |
39 46 7 60
|
fsumsplit |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) ) |
62 |
|
inidm |
⊢ ( ∪ 𝐴 ∩ ∪ 𝐴 ) = ∪ 𝐴 |
63 |
62
|
fveq2i |
⊢ ( ♯ ‘ ( ∪ 𝐴 ∩ ∪ 𝐴 ) ) = ( ♯ ‘ ∪ 𝐴 ) |
64 |
63
|
oveq2i |
⊢ ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ( ∪ 𝐴 ∩ ∪ 𝐴 ) ) ) = ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ∪ 𝐴 ) ) |
65 |
4
|
subidd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ∪ 𝐴 ) ) = 0 ) |
66 |
64 65
|
eqtrid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ( ∪ 𝐴 ∩ ∪ 𝐴 ) ) ) = 0 ) |
67 |
|
incexclem |
⊢ ( ( 𝐴 ∈ Fin ∧ ∪ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ( ∪ 𝐴 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
68 |
1 67
|
syldan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − ( ♯ ‘ ( ∪ 𝐴 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
69 |
66 68
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 0 = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
70 |
4 37
|
negsubd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) + - Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) = ( ( ♯ ‘ ∪ 𝐴 ) − Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) ) |
71 |
|
0ex |
⊢ ∅ ∈ V |
72 |
|
1cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → 1 ∈ ℂ ) |
73 |
72 4
|
mulcld |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) ∈ ℂ ) |
74 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ∅ ) ) |
75 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
76 |
74 75
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = 0 ) |
77 |
76
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( - 1 ↑ 0 ) ) |
78 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
79 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
80 |
78 79
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
81 |
77 80
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = 1 ) |
82 |
|
rint0 |
⊢ ( 𝑠 = ∅ → ( ∪ 𝐴 ∩ ∩ 𝑠 ) = ∪ 𝐴 ) |
83 |
82
|
fveq2d |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ∪ 𝐴 ) ) |
84 |
81 83
|
oveq12d |
⊢ ( 𝑠 = ∅ → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) ) |
85 |
84
|
sumsn |
⊢ ( ( ∅ ∈ V ∧ ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) ∈ ℂ ) → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) ) |
86 |
71 73 85
|
sylancr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) ) |
87 |
4
|
mulid2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( 1 · ( ♯ ‘ ∪ 𝐴 ) ) = ( ♯ ‘ ∪ 𝐴 ) ) |
88 |
86 87
|
eqtr2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
89 |
9 36
|
fsumneg |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) - ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) = - Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) |
90 |
|
expm1t |
⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ 𝑠 ) ∈ ℕ ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · - 1 ) ) |
91 |
11 21 90
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · - 1 ) ) |
92 |
24 11
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · - 1 ) = ( - 1 · ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) ) ) |
93 |
24
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( - 1 · ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) ) = - ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) ) |
94 |
91 92 93
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = - ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) ) |
95 |
25
|
unissd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∪ 𝑠 ⊆ ∪ 𝐴 ) |
96 |
31 95
|
sstrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∩ 𝑠 ⊆ ∪ 𝐴 ) |
97 |
|
sseqin2 |
⊢ ( ∩ 𝑠 ⊆ ∪ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) |
98 |
96 97
|
sylib |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ∪ 𝐴 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) |
99 |
98
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ∩ 𝑠 ) ) |
100 |
94 99
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) = ( - ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) |
101 |
24 35
|
mulneg1d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( - ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) = - ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) |
102 |
100 101
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) → - ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
103 |
102
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) - ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) = Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
104 |
89 103
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → - Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) = Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) |
105 |
88 104
|
oveq12d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) + - Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) ) |
106 |
70 105
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( ∪ 𝐴 ∩ ∩ 𝑠 ) ) ) ) ) |
107 |
61 69 106
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ( ♯ ‘ ∪ 𝐴 ) − Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) = 0 ) |
108 |
4 37 107
|
subeq0d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin ) → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑠 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) − 1 ) ) · ( ♯ ‘ ∩ 𝑠 ) ) ) |