Step |
Hyp |
Ref |
Expression |
1 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
2 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
4 |
3
|
ineq2d |
⊢ ( 𝑥 = ∅ → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∅ ) ) |
5 |
|
in0 |
⊢ ( 𝑏 ∩ ∅ ) = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑏 ∩ ∪ 𝑥 ) = ∅ ) |
7 |
6
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ∅ ) ) |
8 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − 0 ) ) |
11 |
|
pweq |
⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅ ) |
12 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = { ∅ } ) |
14 |
13
|
sumeq1d |
⊢ ( 𝑥 = ∅ → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
15 |
10 14
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
17 |
|
unieq |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦 ) |
18 |
17
|
ineq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∪ 𝑦 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) ) |
21 |
|
pweq |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) |
22 |
21
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
25 |
|
unieq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 = ∪ ( 𝑦 ∪ { 𝑧 } ) ) |
26 |
|
uniun |
⊢ ∪ ( 𝑦 ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ ∪ { 𝑧 } ) |
27 |
|
vex |
⊢ 𝑧 ∈ V |
28 |
27
|
unisn |
⊢ ∪ { 𝑧 } = 𝑧 |
29 |
28
|
uneq2i |
⊢ ( ∪ 𝑦 ∪ ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ 𝑧 ) |
30 |
26 29
|
eqtri |
⊢ ∪ ( 𝑦 ∪ { 𝑧 } ) = ( ∪ 𝑦 ∪ 𝑧 ) |
31 |
25 30
|
eqtrdi |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 = ( ∪ 𝑦 ∪ 𝑧 ) ) |
32 |
31
|
ineq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) ) |
35 |
|
pweq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑥 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
36 |
35
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
39 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
40 |
39
|
ineq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑏 ∩ ∪ 𝑥 ) = ( 𝑏 ∩ ∪ 𝐴 ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) = ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) ) |
43 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
44 |
43
|
sumeq1d |
⊢ ( 𝑥 = 𝐴 → Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
45 |
42 44
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
46 |
45
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑥 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑥 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
47 |
|
hashcl |
⊢ ( 𝑏 ∈ Fin → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
48 |
47
|
nn0cnd |
⊢ ( 𝑏 ∈ Fin → ( ♯ ‘ 𝑏 ) ∈ ℂ ) |
49 |
48
|
mulid2d |
⊢ ( 𝑏 ∈ Fin → ( 1 · ( ♯ ‘ 𝑏 ) ) = ( ♯ ‘ 𝑏 ) ) |
50 |
|
0ex |
⊢ ∅ ∈ V |
51 |
49 48
|
eqeltrd |
⊢ ( 𝑏 ∈ Fin → ( 1 · ( ♯ ‘ 𝑏 ) ) ∈ ℂ ) |
52 |
|
fveq2 |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ∅ ) ) |
53 |
52 8
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ 𝑠 ) = 0 ) |
54 |
53
|
oveq2d |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( - 1 ↑ 0 ) ) |
55 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
56 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
57 |
55 56
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
58 |
54 57
|
eqtrdi |
⊢ ( 𝑠 = ∅ → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = 1 ) |
59 |
|
rint0 |
⊢ ( 𝑠 = ∅ → ( 𝑏 ∩ ∩ 𝑠 ) = 𝑏 ) |
60 |
59
|
fveq2d |
⊢ ( 𝑠 = ∅ → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ 𝑏 ) ) |
61 |
58 60
|
oveq12d |
⊢ ( 𝑠 = ∅ → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
62 |
61
|
sumsn |
⊢ ( ( ∅ ∈ V ∧ ( 1 · ( ♯ ‘ 𝑏 ) ) ∈ ℂ ) → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
63 |
50 51 62
|
sylancr |
⊢ ( 𝑏 ∈ Fin → Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( 1 · ( ♯ ‘ 𝑏 ) ) ) |
64 |
48
|
subid1d |
⊢ ( 𝑏 ∈ Fin → ( ( ♯ ‘ 𝑏 ) − 0 ) = ( ♯ ‘ 𝑏 ) ) |
65 |
49 63 64
|
3eqtr4rd |
⊢ ( 𝑏 ∈ Fin → ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
66 |
65
|
rgen |
⊢ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − 0 ) = Σ 𝑠 ∈ { ∅ } ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) |
67 |
|
fveq2 |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ 𝑥 ) ) |
68 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ∪ 𝑦 ) ) |
69 |
68
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) |
70 |
67 69
|
oveq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) ) |
71 |
|
simpl |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑏 = 𝑥 ) |
72 |
71
|
ineq1d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ∩ 𝑠 ) ) |
73 |
72
|
fveq2d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) |
74 |
73
|
oveq2d |
⊢ ( ( 𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
75 |
74
|
sumeq2dv |
⊢ ( 𝑏 = 𝑥 → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
76 |
70 75
|
eqeq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
77 |
76
|
rspcva |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
78 |
77
|
adantll |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
79 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝑥 ∈ Fin ) |
80 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑧 ) ⊆ 𝑥 |
81 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ 𝑧 ) ⊆ 𝑥 ) → ( 𝑥 ∩ 𝑧 ) ∈ Fin ) |
82 |
79 80 81
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ 𝑧 ) ∈ Fin ) |
83 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) |
84 |
|
ineq1 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∪ 𝑦 ) = ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) ) |
85 |
|
in32 |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ 𝑧 ) |
86 |
|
inass |
⊢ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) |
87 |
85 86
|
eqtri |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) |
88 |
84 87
|
eqtrdi |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∪ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) |
89 |
88
|
fveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) |
90 |
83 89
|
oveq12d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) |
91 |
|
ineq1 |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) ) |
92 |
|
in32 |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) = ( ( 𝑥 ∩ ∩ 𝑠 ) ∩ 𝑧 ) |
93 |
|
inass |
⊢ ( ( 𝑥 ∩ ∩ 𝑠 ) ∩ 𝑧 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) |
94 |
92 93
|
eqtri |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) |
95 |
91 94
|
eqtrdi |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) |
96 |
95
|
fveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
98 |
97
|
sumeq2sdv |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
99 |
90 98
|
eqeq12d |
⊢ ( 𝑏 = ( 𝑥 ∩ 𝑧 ) → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
100 |
99
|
rspcva |
⊢ ( ( ( 𝑥 ∩ 𝑧 ) ∈ Fin ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
101 |
82 100
|
sylan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
102 |
78 101
|
oveq12d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
103 |
|
inss1 |
⊢ ( 𝑥 ∩ ∪ 𝑦 ) ⊆ 𝑥 |
104 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ∪ 𝑦 ) ⊆ 𝑥 ) → ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ) |
105 |
79 103 104
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ) |
106 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℕ0 ) |
107 |
105 106
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℕ0 ) |
108 |
107
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ∈ ℂ ) |
109 |
|
hashcl |
⊢ ( ( 𝑥 ∩ 𝑧 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℕ0 ) |
110 |
82 109
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℕ0 ) |
111 |
110
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ∈ ℂ ) |
112 |
|
inss1 |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ⊆ 𝑥 |
113 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ⊆ 𝑥 ) → ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
114 |
79 112 113
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin ) |
115 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
116 |
114 115
|
syl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
117 |
116
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ∈ ℂ ) |
118 |
|
hashun3 |
⊢ ( ( ( 𝑥 ∩ ∪ 𝑦 ) ∈ Fin ∧ ( 𝑥 ∩ 𝑧 ) ∈ Fin ) → ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) ) |
119 |
105 82 118
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) ) |
120 |
|
indi |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) |
121 |
120
|
fveq2i |
⊢ ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
122 |
|
inindi |
⊢ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) = ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) |
123 |
122
|
fveq2i |
⊢ ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) = ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) |
124 |
123
|
oveq2i |
⊢ ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( ( 𝑥 ∩ ∪ 𝑦 ) ∩ ( 𝑥 ∩ 𝑧 ) ) ) ) |
125 |
119 121 124
|
3eqtr4g |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) |
126 |
108 111 117 125
|
assraddsubd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
127 |
126
|
oveq2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) ) |
128 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
129 |
128
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
130 |
129
|
nn0cnd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ 𝑥 ) ∈ ℂ ) |
131 |
111 117
|
subcld |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
132 |
130 108 131
|
subsub4d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) + ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) ) |
133 |
127 132
|
eqtr4d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
134 |
133
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ∪ 𝑦 ) ) ) − ( ( ♯ ‘ ( 𝑥 ∩ 𝑧 ) ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∩ 𝑧 ) ) ) ) ) ) |
135 |
|
disjdif |
⊢ ( 𝒫 𝑦 ∩ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = ∅ |
136 |
135
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝒫 𝑦 ∩ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = ∅ ) |
137 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
138 |
137
|
sspwi |
⊢ 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) |
139 |
|
undif |
⊢ ( 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
140 |
138 139
|
mpbi |
⊢ ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) = 𝒫 ( 𝑦 ∪ { 𝑧 } ) |
141 |
140
|
eqcomi |
⊢ 𝒫 ( 𝑦 ∪ { 𝑧 } ) = ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
142 |
141
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 ( 𝑦 ∪ { 𝑧 } ) = ( 𝒫 𝑦 ∪ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) |
143 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝑦 ∈ Fin ) |
144 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
145 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
146 |
143 144 145
|
sylancl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
147 |
|
pwfi |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ↔ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
148 |
146 147
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
149 |
55
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → - 1 ∈ ℂ ) |
150 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) → 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
151 |
|
ssfi |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑠 ∈ Fin ) |
152 |
146 150 151
|
syl2an |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → 𝑠 ∈ Fin ) |
153 |
|
hashcl |
⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
154 |
152 153
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
155 |
149 154
|
expcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ∈ ℂ ) |
156 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → 𝑥 ∈ Fin ) |
157 |
|
inss1 |
⊢ ( 𝑥 ∩ ∩ 𝑠 ) ⊆ 𝑥 |
158 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ∩ 𝑠 ) ⊆ 𝑥 ) → ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin ) |
159 |
156 157 158
|
sylancl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin ) |
160 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ∩ 𝑠 ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
161 |
159 160
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℕ0 ) |
162 |
161
|
nn0cnd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ∈ ℂ ) |
163 |
155 162
|
mulcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
164 |
136 142 148 163
|
fsumsplit |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
165 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) |
166 |
165
|
oveq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) ) |
167 |
|
inteq |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ∩ 𝑠 = ∩ ( 𝑡 ∪ { 𝑧 } ) ) |
168 |
27
|
intunsn |
⊢ ∩ ( 𝑡 ∪ { 𝑧 } ) = ( ∩ 𝑡 ∩ 𝑧 ) |
169 |
167 168
|
eqtrdi |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ∩ 𝑠 = ( ∩ 𝑡 ∩ 𝑧 ) ) |
170 |
169
|
ineq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( 𝑥 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) |
171 |
170
|
fveq2d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) |
172 |
166 171
|
oveq12d |
⊢ ( 𝑠 = ( 𝑡 ∪ { 𝑧 } ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) ) |
173 |
|
pwfi |
⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) |
174 |
143 173
|
sylib |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 𝑦 ∈ Fin ) |
175 |
|
eqid |
⊢ ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) = ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) |
176 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝑦 → 𝑢 ⊆ 𝑦 ) |
177 |
176
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → 𝑢 ⊆ 𝑦 ) |
178 |
|
unss1 |
⊢ ( 𝑢 ⊆ 𝑦 → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
179 |
177 178
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
180 |
|
vex |
⊢ 𝑢 ∈ V |
181 |
|
snex |
⊢ { 𝑧 } ∈ V |
182 |
180 181
|
unex |
⊢ ( 𝑢 ∪ { 𝑧 } ) ∈ V |
183 |
182
|
elpw |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
184 |
179 183
|
sylibr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
185 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
186 |
|
elpwi |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 → ( 𝑢 ∪ { 𝑧 } ) ⊆ 𝑦 ) |
187 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) |
188 |
27
|
snss |
⊢ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) ) |
189 |
187 188
|
mpbir |
⊢ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) |
190 |
189
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ) |
191 |
|
ssel |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ⊆ 𝑦 → ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) → 𝑧 ∈ 𝑦 ) ) |
192 |
186 190 191
|
syl2imc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 → 𝑧 ∈ 𝑦 ) ) |
193 |
185 192
|
mtod |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ¬ ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 𝑦 ) |
194 |
184 193
|
eldifd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑢 ∈ 𝒫 𝑦 ) → ( 𝑢 ∪ { 𝑧 } ) ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
195 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
196 |
195
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
197 |
196
|
elpwid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
198 |
|
uncom |
⊢ ( 𝑦 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑦 ) |
199 |
197 198
|
sseqtrdi |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → 𝑠 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) |
200 |
|
ssundif |
⊢ ( 𝑠 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
201 |
199 200
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
202 |
|
vex |
⊢ 𝑦 ∈ V |
203 |
202
|
elpw2 |
⊢ ( ( 𝑠 ∖ { 𝑧 } ) ∈ 𝒫 𝑦 ↔ ( 𝑠 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
204 |
201 203
|
sylibr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( 𝑠 ∖ { 𝑧 } ) ∈ 𝒫 𝑦 ) |
205 |
|
elpwunsn |
⊢ ( 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) → 𝑧 ∈ 𝑠 ) |
206 |
205
|
ad2antll |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑧 ∈ 𝑠 ) |
207 |
206
|
snssd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → { 𝑧 } ⊆ 𝑠 ) |
208 |
|
ssequn2 |
⊢ ( { 𝑧 } ⊆ 𝑠 ↔ ( 𝑠 ∪ { 𝑧 } ) = 𝑠 ) |
209 |
207 208
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑠 ∪ { 𝑧 } ) = 𝑠 ) |
210 |
209
|
eqcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑠 = ( 𝑠 ∪ { 𝑧 } ) ) |
211 |
|
uneq1 |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑢 ∪ { 𝑧 } ) = ( ( 𝑠 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
212 |
|
undif1 |
⊢ ( ( 𝑠 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) |
213 |
211 212
|
eqtrdi |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑢 ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) ) |
214 |
213
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ↔ 𝑠 = ( 𝑠 ∪ { 𝑧 } ) ) ) |
215 |
210 214
|
syl5ibrcom |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) → 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
216 |
176
|
ad2antrl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑢 ⊆ 𝑦 ) |
217 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
218 |
216 217
|
ssneldd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ¬ 𝑧 ∈ 𝑢 ) |
219 |
|
difsnb |
⊢ ( ¬ 𝑧 ∈ 𝑢 ↔ ( 𝑢 ∖ { 𝑧 } ) = 𝑢 ) |
220 |
218 219
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 ∖ { 𝑧 } ) = 𝑢 ) |
221 |
220
|
eqcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → 𝑢 = ( 𝑢 ∖ { 𝑧 } ) ) |
222 |
|
difeq1 |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑠 ∖ { 𝑧 } ) = ( ( 𝑢 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) |
223 |
|
difun2 |
⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∖ { 𝑧 } ) = ( 𝑢 ∖ { 𝑧 } ) |
224 |
222 223
|
eqtrdi |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑠 ∖ { 𝑧 } ) = ( 𝑢 ∖ { 𝑧 } ) ) |
225 |
224
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ↔ 𝑢 = ( 𝑢 ∖ { 𝑧 } ) ) ) |
226 |
221 225
|
syl5ibrcom |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑠 = ( 𝑢 ∪ { 𝑧 } ) → 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ) ) |
227 |
215 226
|
impbid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ( 𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) ) → ( 𝑢 = ( 𝑠 ∖ { 𝑧 } ) ↔ 𝑠 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
228 |
175 194 204 227
|
f1o2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) : 𝒫 𝑦 –1-1-onto→ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) |
229 |
|
uneq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 ∪ { 𝑧 } ) = ( 𝑡 ∪ { 𝑧 } ) ) |
230 |
|
vex |
⊢ 𝑡 ∈ V |
231 |
230 181
|
unex |
⊢ ( 𝑡 ∪ { 𝑧 } ) ∈ V |
232 |
229 175 231
|
fvmpt |
⊢ ( 𝑡 ∈ 𝒫 𝑦 → ( ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) ‘ 𝑡 ) = ( 𝑡 ∪ { 𝑧 } ) ) |
233 |
232
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑡 ∈ 𝒫 𝑦 ) → ( ( 𝑢 ∈ 𝒫 𝑦 ↦ ( 𝑢 ∪ { 𝑧 } ) ) ‘ 𝑡 ) = ( 𝑡 ∪ { 𝑧 } ) ) |
234 |
195 163
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
235 |
172 174 228 233 234
|
fsumf1o |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) ) |
236 |
|
uneq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∪ { 𝑧 } ) = ( 𝑠 ∪ { 𝑧 } ) ) |
237 |
236
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) = ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
238 |
237
|
oveq2d |
⊢ ( 𝑡 = 𝑠 → ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) = ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) ) |
239 |
|
inteq |
⊢ ( 𝑡 = 𝑠 → ∩ 𝑡 = ∩ 𝑠 ) |
240 |
239
|
ineq1d |
⊢ ( 𝑡 = 𝑠 → ( ∩ 𝑡 ∩ 𝑧 ) = ( ∩ 𝑠 ∩ 𝑧 ) ) |
241 |
240
|
ineq2d |
⊢ ( 𝑡 = 𝑠 → ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) = ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) |
242 |
241
|
fveq2d |
⊢ ( 𝑡 = 𝑠 → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
243 |
238 242
|
oveq12d |
⊢ ( 𝑡 = 𝑠 → ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
244 |
243
|
cbvsumv |
⊢ Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) |
245 |
55
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → - 1 ∈ ℂ ) |
246 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑦 → 𝑠 ⊆ 𝑦 ) |
247 |
|
ssfi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑠 ⊆ 𝑦 ) → 𝑠 ∈ Fin ) |
248 |
143 246 247
|
syl2an |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ∈ Fin ) |
249 |
248 153
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
250 |
245 249
|
expp1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) + 1 ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · - 1 ) ) |
251 |
246
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ⊆ 𝑦 ) |
252 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑦 ) |
253 |
251 252
|
ssneldd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ¬ 𝑧 ∈ 𝑠 ) |
254 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) ) |
255 |
254
|
elv |
⊢ ( ( 𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) |
256 |
248 253 255
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑠 ) + 1 ) ) |
257 |
256
|
oveq2d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = ( - 1 ↑ ( ( ♯ ‘ 𝑠 ) + 1 ) ) ) |
258 |
138
|
sseli |
⊢ ( 𝑠 ∈ 𝒫 𝑦 → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
259 |
258 155
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ∈ ℂ ) |
260 |
245 259
|
mulcomd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · - 1 ) ) |
261 |
250 257 260
|
3eqtr4d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) ) |
262 |
259
|
mulm1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 · ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) = - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) |
263 |
261 262
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) = - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) ) |
264 |
263
|
oveq1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = ( - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
265 |
|
inss1 |
⊢ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ⊆ 𝑥 |
266 |
|
ssfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ⊆ 𝑥 ) → ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin ) |
267 |
156 265 266
|
sylancl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin ) |
268 |
|
hashcl |
⊢ ( ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
269 |
267 268
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℕ0 ) |
270 |
269
|
nn0cnd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℂ ) |
271 |
258 270
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ∈ ℂ ) |
272 |
259 271
|
mulneg1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( - ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
273 |
264 272
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
274 |
273
|
sumeq2dv |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
275 |
244 274
|
eqtrid |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑡 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ ( 𝑡 ∪ { 𝑧 } ) ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑡 ∩ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
276 |
155 270
|
mulcld |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
277 |
258 276
|
sylan2 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
278 |
174 277
|
fsumneg |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 - ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) = - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
279 |
235 275 278
|
3eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) |
280 |
279
|
oveq2d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + Σ 𝑠 ∈ ( 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∖ 𝒫 𝑦 ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
281 |
138
|
a1i |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → 𝒫 𝑦 ⊆ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
282 |
281
|
sselda |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
283 |
282 163
|
syldan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
284 |
174 283
|
fsumcl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ∈ ℂ ) |
285 |
282 276
|
syldan |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ 𝑠 ∈ 𝒫 𝑦 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
286 |
174 285
|
fsumcl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ∈ ℂ ) |
287 |
284 286
|
negsubd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) + - Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
288 |
164 280 287
|
3eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
289 |
288
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) = ( Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) − Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ( ∩ 𝑠 ∩ 𝑧 ) ) ) ) ) ) |
290 |
102 134 289
|
3eqtr4d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) ∧ ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
291 |
290
|
ex |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑥 ∈ Fin ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
292 |
291
|
ralrimdva |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ∀ 𝑥 ∈ Fin ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
293 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) = ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) |
294 |
293
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) = ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) |
295 |
67 294
|
oveq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) ) |
296 |
|
ineq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝑥 ∩ ∩ 𝑠 ) ) |
297 |
296
|
fveq2d |
⊢ ( 𝑏 = 𝑥 → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) |
298 |
297
|
oveq2d |
⊢ ( 𝑏 = 𝑥 → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
299 |
298
|
sumeq2sdv |
⊢ ( 𝑏 = 𝑥 → Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
300 |
295 299
|
eqeq12d |
⊢ ( 𝑏 = 𝑥 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) ) |
301 |
300
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ∀ 𝑥 ∈ Fin ( ( ♯ ‘ 𝑥 ) − ( ♯ ‘ ( 𝑥 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑥 ∩ ∩ 𝑠 ) ) ) ) |
302 |
292 301
|
syl6ibr |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝑦 ) ) ) = Σ 𝑠 ∈ 𝒫 𝑦 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) → ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ( ∪ 𝑦 ∪ 𝑧 ) ) ) ) = Σ 𝑠 ∈ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) ) |
303 |
16 24 38 46 66 302
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ) |
304 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( ♯ ‘ 𝑏 ) = ( ♯ ‘ 𝐵 ) ) |
305 |
|
ineq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∩ ∪ 𝐴 ) = ( 𝐵 ∩ ∪ 𝐴 ) ) |
306 |
305
|
fveq2d |
⊢ ( 𝑏 = 𝐵 → ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) = ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) |
307 |
304 306
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) ) |
308 |
|
simpl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → 𝑏 = 𝐵 ) |
309 |
308
|
ineq1d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( 𝑏 ∩ ∩ 𝑠 ) = ( 𝐵 ∩ ∩ 𝑠 ) ) |
310 |
309
|
fveq2d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) = ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) |
311 |
310
|
oveq2d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴 ) → ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
312 |
311
|
sumeq2dv |
⊢ ( 𝑏 = 𝐵 → Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
313 |
307 312
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ↔ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) ) |
314 |
313
|
rspccva |
⊢ ( ( ∀ 𝑏 ∈ Fin ( ( ♯ ‘ 𝑏 ) − ( ♯ ‘ ( 𝑏 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝑏 ∩ ∩ 𝑠 ) ) ) ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |
315 |
303 314
|
sylan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐵 ∩ ∪ 𝐴 ) ) ) = Σ 𝑠 ∈ 𝒫 𝐴 ( ( - 1 ↑ ( ♯ ‘ 𝑠 ) ) · ( ♯ ‘ ( 𝐵 ∩ ∩ 𝑠 ) ) ) ) |