| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unifi |  |-  ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin ) | 
						
							| 2 |  | hashcl |  |-  ( U. A e. Fin -> ( # ` U. A ) e. NN0 ) | 
						
							| 3 | 2 | nn0cnd |  |-  ( U. A e. Fin -> ( # ` U. A ) e. CC ) | 
						
							| 4 | 1 3 | syl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) e. CC ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> A e. Fin ) | 
						
							| 6 |  | pwfi |  |-  ( A e. Fin <-> ~P A e. Fin ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ~P A e. Fin ) | 
						
							| 8 |  | diffi |  |-  ( ~P A e. Fin -> ( ~P A \ { (/) } ) e. Fin ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ~P A \ { (/) } ) e. Fin ) | 
						
							| 10 |  | 1cnd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> 1 e. CC ) | 
						
							| 11 | 10 | negcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> -u 1 e. CC ) | 
						
							| 12 |  | eldifsni |  |-  ( s e. ( ~P A \ { (/) } ) -> s =/= (/) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s =/= (/) ) | 
						
							| 14 |  | eldifi |  |-  ( s e. ( ~P A \ { (/) } ) -> s e. ~P A ) | 
						
							| 15 |  | elpwi |  |-  ( s e. ~P A -> s C_ A ) | 
						
							| 16 | 14 15 | syl |  |-  ( s e. ( ~P A \ { (/) } ) -> s C_ A ) | 
						
							| 17 |  | ssfi |  |-  ( ( A e. Fin /\ s C_ A ) -> s e. Fin ) | 
						
							| 18 | 5 16 17 | syl2an |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s e. Fin ) | 
						
							| 19 |  | hashnncl |  |-  ( s e. Fin -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 21 | 13 20 | mpbird |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` s ) e. NN ) | 
						
							| 22 |  | nnm1nn0 |  |-  ( ( # ` s ) e. NN -> ( ( # ` s ) - 1 ) e. NN0 ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( # ` s ) - 1 ) e. NN0 ) | 
						
							| 24 | 11 23 | expcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( ( # ` s ) - 1 ) ) e. CC ) | 
						
							| 25 | 16 | adantl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s C_ A ) | 
						
							| 26 |  | simplr |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> A C_ Fin ) | 
						
							| 27 | 25 26 | sstrd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s C_ Fin ) | 
						
							| 28 |  | unifi |  |-  ( ( s e. Fin /\ s C_ Fin ) -> U. s e. Fin ) | 
						
							| 29 | 18 27 28 | syl2anc |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> U. s e. Fin ) | 
						
							| 30 |  | intssuni |  |-  ( s =/= (/) -> |^| s C_ U. s ) | 
						
							| 31 | 13 30 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s C_ U. s ) | 
						
							| 32 | 29 31 | ssfid |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s e. Fin ) | 
						
							| 33 |  | hashcl |  |-  ( |^| s e. Fin -> ( # ` |^| s ) e. NN0 ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` |^| s ) e. NN0 ) | 
						
							| 35 | 34 | nn0cnd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` |^| s ) e. CC ) | 
						
							| 36 | 24 35 | mulcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) | 
						
							| 37 | 9 36 | fsumcl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) | 
						
							| 38 |  | disjdif |  |-  ( { (/) } i^i ( ~P A \ { (/) } ) ) = (/) | 
						
							| 39 | 38 | a1i |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( { (/) } i^i ( ~P A \ { (/) } ) ) = (/) ) | 
						
							| 40 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 41 |  | snssi |  |-  ( (/) e. ~P A -> { (/) } C_ ~P A ) | 
						
							| 42 | 40 41 | ax-mp |  |-  { (/) } C_ ~P A | 
						
							| 43 |  | undif |  |-  ( { (/) } C_ ~P A <-> ( { (/) } u. ( ~P A \ { (/) } ) ) = ~P A ) | 
						
							| 44 | 42 43 | mpbi |  |-  ( { (/) } u. ( ~P A \ { (/) } ) ) = ~P A | 
						
							| 45 | 44 | eqcomi |  |-  ~P A = ( { (/) } u. ( ~P A \ { (/) } ) ) | 
						
							| 46 | 45 | a1i |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ~P A = ( { (/) } u. ( ~P A \ { (/) } ) ) ) | 
						
							| 47 |  | 1cnd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> 1 e. CC ) | 
						
							| 48 | 47 | negcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> -u 1 e. CC ) | 
						
							| 49 | 5 15 17 | syl2an |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> s e. Fin ) | 
						
							| 50 |  | hashcl |  |-  ( s e. Fin -> ( # ` s ) e. NN0 ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` s ) e. NN0 ) | 
						
							| 52 | 48 51 | expcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( -u 1 ^ ( # ` s ) ) e. CC ) | 
						
							| 53 | 1 | adantr |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> U. A e. Fin ) | 
						
							| 54 |  | inss1 |  |-  ( U. A i^i |^| s ) C_ U. A | 
						
							| 55 |  | ssfi |  |-  ( ( U. A e. Fin /\ ( U. A i^i |^| s ) C_ U. A ) -> ( U. A i^i |^| s ) e. Fin ) | 
						
							| 56 | 53 54 55 | sylancl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( U. A i^i |^| s ) e. Fin ) | 
						
							| 57 |  | hashcl |  |-  ( ( U. A i^i |^| s ) e. Fin -> ( # ` ( U. A i^i |^| s ) ) e. NN0 ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` ( U. A i^i |^| s ) ) e. NN0 ) | 
						
							| 59 | 58 | nn0cnd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` ( U. A i^i |^| s ) ) e. CC ) | 
						
							| 60 | 52 59 | mulcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) e. CC ) | 
						
							| 61 | 39 46 7 60 | fsumsplit |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) | 
						
							| 62 |  | inidm |  |-  ( U. A i^i U. A ) = U. A | 
						
							| 63 | 62 | fveq2i |  |-  ( # ` ( U. A i^i U. A ) ) = ( # ` U. A ) | 
						
							| 64 | 63 | oveq2i |  |-  ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = ( ( # ` U. A ) - ( # ` U. A ) ) | 
						
							| 65 | 4 | subidd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` U. A ) ) = 0 ) | 
						
							| 66 | 64 65 | eqtrid |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = 0 ) | 
						
							| 67 |  | incexclem |  |-  ( ( A e. Fin /\ U. A e. Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 68 | 1 67 | syldan |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 69 | 66 68 | eqtr3d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> 0 = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 70 | 4 37 | negsubd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) + -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) ) | 
						
							| 71 |  | 0ex |  |-  (/) e. _V | 
						
							| 72 |  | 1cnd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> 1 e. CC ) | 
						
							| 73 | 72 4 | mulcld |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( 1 x. ( # ` U. A ) ) e. CC ) | 
						
							| 74 |  | fveq2 |  |-  ( s = (/) -> ( # ` s ) = ( # ` (/) ) ) | 
						
							| 75 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 76 | 74 75 | eqtrdi |  |-  ( s = (/) -> ( # ` s ) = 0 ) | 
						
							| 77 | 76 | oveq2d |  |-  ( s = (/) -> ( -u 1 ^ ( # ` s ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 78 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 79 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 80 | 78 79 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 81 | 77 80 | eqtrdi |  |-  ( s = (/) -> ( -u 1 ^ ( # ` s ) ) = 1 ) | 
						
							| 82 |  | rint0 |  |-  ( s = (/) -> ( U. A i^i |^| s ) = U. A ) | 
						
							| 83 | 82 | fveq2d |  |-  ( s = (/) -> ( # ` ( U. A i^i |^| s ) ) = ( # ` U. A ) ) | 
						
							| 84 | 81 83 | oveq12d |  |-  ( s = (/) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) | 
						
							| 85 | 84 | sumsn |  |-  ( ( (/) e. _V /\ ( 1 x. ( # ` U. A ) ) e. CC ) -> sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) | 
						
							| 86 | 71 73 85 | sylancr |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) | 
						
							| 87 | 4 | mullidd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( 1 x. ( # ` U. A ) ) = ( # ` U. A ) ) | 
						
							| 88 | 86 87 | eqtr2d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 89 | 9 36 | fsumneg |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 90 |  | expm1t |  |-  ( ( -u 1 e. CC /\ ( # ` s ) e. NN ) -> ( -u 1 ^ ( # ` s ) ) = ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) ) | 
						
							| 91 | 11 21 90 | syl2anc |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( # ` s ) ) = ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) ) | 
						
							| 92 | 24 11 | mulcomd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) ) | 
						
							| 93 | 24 | mulm1d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 x. ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) = -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) | 
						
							| 94 | 91 92 93 | 3eqtrd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( # ` s ) ) = -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) | 
						
							| 95 | 25 | unissd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> U. s C_ U. A ) | 
						
							| 96 | 31 95 | sstrd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s C_ U. A ) | 
						
							| 97 |  | sseqin2 |  |-  ( |^| s C_ U. A <-> ( U. A i^i |^| s ) = |^| s ) | 
						
							| 98 | 96 97 | sylib |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( U. A i^i |^| s ) = |^| s ) | 
						
							| 99 | 98 | fveq2d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` ( U. A i^i |^| s ) ) = ( # ` |^| s ) ) | 
						
							| 100 | 94 99 | oveq12d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 101 | 24 35 | mulneg1d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 102 | 100 101 | eqtr2d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 103 | 102 | sumeq2dv |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 104 | 89 103 | eqtr3d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) | 
						
							| 105 | 88 104 | oveq12d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) + -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) | 
						
							| 106 | 70 105 | eqtr3d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) | 
						
							| 107 | 61 69 106 | 3eqtr4rd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = 0 ) | 
						
							| 108 | 4 37 107 | subeq0d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) |