| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incexc |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 2 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( # ` A ) e. NN0 ) | 
						
							| 4 | 3 | nn0zd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( # ` A ) e. ZZ ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> A e. Fin ) | 
						
							| 6 |  | elpwi |  |-  ( k e. ~P A -> k C_ A ) | 
						
							| 7 |  | ssdomg |  |-  ( A e. Fin -> ( k C_ A -> k ~<_ A ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( A e. Fin /\ k C_ A ) -> k ~<_ A ) | 
						
							| 9 | 5 6 8 | syl2an |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> k ~<_ A ) | 
						
							| 10 |  | hashdomi |  |-  ( k ~<_ A -> ( # ` k ) <_ ( # ` A ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( # ` k ) <_ ( # ` A ) ) | 
						
							| 12 |  | fznn |  |-  ( ( # ` A ) e. ZZ -> ( ( # ` k ) e. ( 1 ... ( # ` A ) ) <-> ( ( # ` k ) e. NN /\ ( # ` k ) <_ ( # ` A ) ) ) ) | 
						
							| 13 | 12 | rbaibd |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` k ) <_ ( # ` A ) ) -> ( ( # ` k ) e. ( 1 ... ( # ` A ) ) <-> ( # ` k ) e. NN ) ) | 
						
							| 14 | 4 11 13 | syl2anc |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( ( # ` k ) e. ( 1 ... ( # ` A ) ) <-> ( # ` k ) e. NN ) ) | 
						
							| 15 |  | ssfi |  |-  ( ( A e. Fin /\ k C_ A ) -> k e. Fin ) | 
						
							| 16 | 5 6 15 | syl2an |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> k e. Fin ) | 
						
							| 17 |  | hashnncl |  |-  ( k e. Fin -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) | 
						
							| 19 | 14 18 | bitr2d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( k =/= (/) <-> ( # ` k ) e. ( 1 ... ( # ` A ) ) ) ) | 
						
							| 20 |  | df-ne |  |-  ( k =/= (/) <-> -. k = (/) ) | 
						
							| 21 |  | risset |  |-  ( ( # ` k ) e. ( 1 ... ( # ` A ) ) <-> E. n e. ( 1 ... ( # ` A ) ) n = ( # ` k ) ) | 
						
							| 22 | 19 20 21 | 3bitr3g |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( -. k = (/) <-> E. n e. ( 1 ... ( # ` A ) ) n = ( # ` k ) ) ) | 
						
							| 23 |  | velsn |  |-  ( k e. { (/) } <-> k = (/) ) | 
						
							| 24 | 23 | notbii |  |-  ( -. k e. { (/) } <-> -. k = (/) ) | 
						
							| 25 |  | eqcom |  |-  ( ( # ` k ) = n <-> n = ( # ` k ) ) | 
						
							| 26 | 25 | rexbii |  |-  ( E. n e. ( 1 ... ( # ` A ) ) ( # ` k ) = n <-> E. n e. ( 1 ... ( # ` A ) ) n = ( # ` k ) ) | 
						
							| 27 | 22 24 26 | 3bitr4g |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ k e. ~P A ) -> ( -. k e. { (/) } <-> E. n e. ( 1 ... ( # ` A ) ) ( # ` k ) = n ) ) | 
						
							| 28 | 27 | rabbidva |  |-  ( ( A e. Fin /\ A C_ Fin ) -> { k e. ~P A | -. k e. { (/) } } = { k e. ~P A | E. n e. ( 1 ... ( # ` A ) ) ( # ` k ) = n } ) | 
						
							| 29 |  | dfdif2 |  |-  ( ~P A \ { (/) } ) = { k e. ~P A | -. k e. { (/) } } | 
						
							| 30 |  | iunrab |  |-  U_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } = { k e. ~P A | E. n e. ( 1 ... ( # ` A ) ) ( # ` k ) = n } | 
						
							| 31 | 28 29 30 | 3eqtr4g |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( ~P A \ { (/) } ) = U_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ) | 
						
							| 32 | 31 | sumeq1d |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. U_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 33 | 1 32 | eqtrd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. U_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 34 |  | fzfid |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( 1 ... ( # ` A ) ) e. Fin ) | 
						
							| 35 |  | simpll |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A e. Fin ) | 
						
							| 36 |  | pwfi |  |-  ( A e. Fin <-> ~P A e. Fin ) | 
						
							| 37 | 35 36 | sylib |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ~P A e. Fin ) | 
						
							| 38 |  | ssrab2 |  |-  { k e. ~P A | ( # ` k ) = n } C_ ~P A | 
						
							| 39 |  | ssfi |  |-  ( ( ~P A e. Fin /\ { k e. ~P A | ( # ` k ) = n } C_ ~P A ) -> { k e. ~P A | ( # ` k ) = n } e. Fin ) | 
						
							| 40 | 37 38 39 | sylancl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> { k e. ~P A | ( # ` k ) = n } e. Fin ) | 
						
							| 41 |  | fveqeq2 |  |-  ( k = s -> ( ( # ` k ) = n <-> ( # ` s ) = n ) ) | 
						
							| 42 | 41 | elrab |  |-  ( s e. { k e. ~P A | ( # ` k ) = n } <-> ( s e. ~P A /\ ( # ` s ) = n ) ) | 
						
							| 43 | 42 | simprbi |  |-  ( s e. { k e. ~P A | ( # ` k ) = n } -> ( # ` s ) = n ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( # ` s ) = n ) | 
						
							| 45 | 44 | ralrimiva |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> A. s e. { k e. ~P A | ( # ` k ) = n } ( # ` s ) = n ) | 
						
							| 46 | 45 | ralrimiva |  |-  ( ( A e. Fin /\ A C_ Fin ) -> A. n e. ( 1 ... ( # ` A ) ) A. s e. { k e. ~P A | ( # ` k ) = n } ( # ` s ) = n ) | 
						
							| 47 |  | invdisj |  |-  ( A. n e. ( 1 ... ( # ` A ) ) A. s e. { k e. ~P A | ( # ` k ) = n } ( # ` s ) = n -> Disj_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( A e. Fin /\ A C_ Fin ) -> Disj_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ) | 
						
							| 49 | 44 | oveq1d |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( ( # ` s ) - 1 ) = ( n - 1 ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( -u 1 ^ ( ( # ` s ) - 1 ) ) = ( -u 1 ^ ( n - 1 ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = ( ( -u 1 ^ ( n - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 52 |  | 1cnd |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> 1 e. CC ) | 
						
							| 53 | 52 | negcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> -u 1 e. CC ) | 
						
							| 54 |  | elfznn |  |-  ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> n e. NN ) | 
						
							| 56 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 58 | 53 57 | expcld |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( -u 1 ^ ( n - 1 ) ) e. CC ) | 
						
							| 60 |  | unifi |  |-  ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin ) | 
						
							| 61 | 60 | ad2antrr |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> U. A e. Fin ) | 
						
							| 62 | 55 | adantr |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> n e. NN ) | 
						
							| 63 | 44 62 | eqeltrd |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( # ` s ) e. NN ) | 
						
							| 64 | 35 | adantr |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> A e. Fin ) | 
						
							| 65 |  | elrabi |  |-  ( s e. { k e. ~P A | ( # ` k ) = n } -> s e. ~P A ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> s e. ~P A ) | 
						
							| 67 |  | elpwi |  |-  ( s e. ~P A -> s C_ A ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> s C_ A ) | 
						
							| 69 | 64 68 | ssfid |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> s e. Fin ) | 
						
							| 70 |  | hashnncl |  |-  ( s e. Fin -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) | 
						
							| 72 | 63 71 | mpbid |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> s =/= (/) ) | 
						
							| 73 |  | intssuni |  |-  ( s =/= (/) -> |^| s C_ U. s ) | 
						
							| 74 | 72 73 | syl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> |^| s C_ U. s ) | 
						
							| 75 | 68 | unissd |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> U. s C_ U. A ) | 
						
							| 76 | 74 75 | sstrd |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> |^| s C_ U. A ) | 
						
							| 77 | 61 76 | ssfid |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> |^| s e. Fin ) | 
						
							| 78 |  | hashcl |  |-  ( |^| s e. Fin -> ( # ` |^| s ) e. NN0 ) | 
						
							| 79 | 77 78 | syl |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( # ` |^| s ) e. NN0 ) | 
						
							| 80 | 79 | nn0cnd |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( # ` |^| s ) e. CC ) | 
						
							| 81 | 59 80 | mulcld |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( ( -u 1 ^ ( n - 1 ) ) x. ( # ` |^| s ) ) e. CC ) | 
						
							| 82 | 51 81 | eqeltrd |  |-  ( ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) | 
						
							| 83 | 82 | anasss |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ ( n e. ( 1 ... ( # ` A ) ) /\ s e. { k e. ~P A | ( # ` k ) = n } ) ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) | 
						
							| 84 | 34 40 48 83 | fsumiun |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. U_ n e. ( 1 ... ( # ` A ) ) { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ n e. ( 1 ... ( # ` A ) ) sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 85 | 51 | sumeq2dv |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( n - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 86 | 40 58 80 | fsummulc2 |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( -u 1 ^ ( n - 1 ) ) x. sum_ s e. { k e. ~P A | ( # ` k ) = n } ( # ` |^| s ) ) = sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( n - 1 ) ) x. ( # ` |^| s ) ) ) | 
						
							| 87 | 85 86 | eqtr4d |  |-  ( ( ( A e. Fin /\ A C_ Fin ) /\ n e. ( 1 ... ( # ` A ) ) ) -> sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = ( ( -u 1 ^ ( n - 1 ) ) x. sum_ s e. { k e. ~P A | ( # ` k ) = n } ( # ` |^| s ) ) ) | 
						
							| 88 | 87 | sumeq2dv |  |-  ( ( A e. Fin /\ A C_ Fin ) -> sum_ n e. ( 1 ... ( # ` A ) ) sum_ s e. { k e. ~P A | ( # ` k ) = n } ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ n e. ( 1 ... ( # ` A ) ) ( ( -u 1 ^ ( n - 1 ) ) x. sum_ s e. { k e. ~P A | ( # ` k ) = n } ( # ` |^| s ) ) ) | 
						
							| 89 | 33 84 88 | 3eqtrd |  |-  ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ n e. ( 1 ... ( # ` A ) ) ( ( -u 1 ^ ( n - 1 ) ) x. sum_ s e. { k e. ~P A | ( # ` k ) = n } ( # ` |^| s ) ) ) |