| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incexc |  | 
						
							| 2 |  | hashcl |  | 
						
							| 3 | 2 | ad2antrr |  | 
						
							| 4 | 3 | nn0zd |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 |  | elpwi |  | 
						
							| 7 |  | ssdomg |  | 
						
							| 8 | 7 | imp |  | 
						
							| 9 | 5 6 8 | syl2an |  | 
						
							| 10 |  | hashdomi |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | fznn |  | 
						
							| 13 | 12 | rbaibd |  | 
						
							| 14 | 4 11 13 | syl2anc |  | 
						
							| 15 |  | ssfi |  | 
						
							| 16 | 5 6 15 | syl2an |  | 
						
							| 17 |  | hashnncl |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 14 18 | bitr2d |  | 
						
							| 20 |  | df-ne |  | 
						
							| 21 |  | risset |  | 
						
							| 22 | 19 20 21 | 3bitr3g |  | 
						
							| 23 |  | velsn |  | 
						
							| 24 | 23 | notbii |  | 
						
							| 25 |  | eqcom |  | 
						
							| 26 | 25 | rexbii |  | 
						
							| 27 | 22 24 26 | 3bitr4g |  | 
						
							| 28 | 27 | rabbidva |  | 
						
							| 29 |  | dfdif2 |  | 
						
							| 30 |  | iunrab |  | 
						
							| 31 | 28 29 30 | 3eqtr4g |  | 
						
							| 32 | 31 | sumeq1d |  | 
						
							| 33 | 1 32 | eqtrd |  | 
						
							| 34 |  | fzfid |  | 
						
							| 35 |  | simpll |  | 
						
							| 36 |  | pwfi |  | 
						
							| 37 | 35 36 | sylib |  | 
						
							| 38 |  | ssrab2 |  | 
						
							| 39 |  | ssfi |  | 
						
							| 40 | 37 38 39 | sylancl |  | 
						
							| 41 |  | fveqeq2 |  | 
						
							| 42 | 41 | elrab |  | 
						
							| 43 | 42 | simprbi |  | 
						
							| 44 | 43 | adantl |  | 
						
							| 45 | 44 | ralrimiva |  | 
						
							| 46 | 45 | ralrimiva |  | 
						
							| 47 |  | invdisj |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 44 | oveq1d |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 50 | oveq1d |  | 
						
							| 52 |  | 1cnd |  | 
						
							| 53 | 52 | negcld |  | 
						
							| 54 |  | elfznn |  | 
						
							| 55 | 54 | adantl |  | 
						
							| 56 |  | nnm1nn0 |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 53 57 | expcld |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 |  | unifi |  | 
						
							| 61 | 60 | ad2antrr |  | 
						
							| 62 | 55 | adantr |  | 
						
							| 63 | 44 62 | eqeltrd |  | 
						
							| 64 | 35 | adantr |  | 
						
							| 65 |  | elrabi |  | 
						
							| 66 | 65 | adantl |  | 
						
							| 67 |  | elpwi |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 | 64 68 | ssfid |  | 
						
							| 70 |  | hashnncl |  | 
						
							| 71 | 69 70 | syl |  | 
						
							| 72 | 63 71 | mpbid |  | 
						
							| 73 |  | intssuni |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 | 68 | unissd |  | 
						
							| 76 | 74 75 | sstrd |  | 
						
							| 77 | 61 76 | ssfid |  | 
						
							| 78 |  | hashcl |  | 
						
							| 79 | 77 78 | syl |  | 
						
							| 80 | 79 | nn0cnd |  | 
						
							| 81 | 59 80 | mulcld |  | 
						
							| 82 | 51 81 | eqeltrd |  | 
						
							| 83 | 82 | anasss |  | 
						
							| 84 | 34 40 48 83 | fsumiun |  | 
						
							| 85 | 51 | sumeq2dv |  | 
						
							| 86 | 40 58 80 | fsummulc2 |  | 
						
							| 87 | 85 86 | eqtr4d |  | 
						
							| 88 | 87 | sumeq2dv |  | 
						
							| 89 | 33 84 88 | 3eqtrd |  |