| Step | Hyp | Ref | Expression | 
						
							| 1 |  | incexc | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ 𝑠  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 2 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | nn0zd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ♯ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 6 |  | elpwi | ⊢ ( 𝑘  ∈  𝒫  𝐴  →  𝑘  ⊆  𝐴 ) | 
						
							| 7 |  | ssdomg | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑘  ⊆  𝐴  →  𝑘  ≼  𝐴 ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑘  ⊆  𝐴 )  →  𝑘  ≼  𝐴 ) | 
						
							| 9 | 5 6 8 | syl2an | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  𝑘  ≼  𝐴 ) | 
						
							| 10 |  | hashdomi | ⊢ ( 𝑘  ≼  𝐴  →  ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 12 |  | fznn | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ↔  ( ( ♯ ‘ 𝑘 )  ∈  ℕ  ∧  ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 13 | 12 | rbaibd | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) )  →  ( ( ♯ ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ↔  ( ♯ ‘ 𝑘 )  ∈  ℕ ) ) | 
						
							| 14 | 4 11 13 | syl2anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ( ♯ ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ↔  ( ♯ ‘ 𝑘 )  ∈  ℕ ) ) | 
						
							| 15 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑘  ⊆  𝐴 )  →  𝑘  ∈  Fin ) | 
						
							| 16 | 5 6 15 | syl2an | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  𝑘  ∈  Fin ) | 
						
							| 17 |  | hashnncl | ⊢ ( 𝑘  ∈  Fin  →  ( ( ♯ ‘ 𝑘 )  ∈  ℕ  ↔  𝑘  ≠  ∅ ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ( ♯ ‘ 𝑘 )  ∈  ℕ  ↔  𝑘  ≠  ∅ ) ) | 
						
							| 19 | 14 18 | bitr2d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( 𝑘  ≠  ∅  ↔  ( ♯ ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 20 |  | df-ne | ⊢ ( 𝑘  ≠  ∅  ↔  ¬  𝑘  =  ∅ ) | 
						
							| 21 |  | risset | ⊢ ( ( ♯ ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ↔  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) 𝑛  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 22 | 19 20 21 | 3bitr3g | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ¬  𝑘  =  ∅  ↔  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) 𝑛  =  ( ♯ ‘ 𝑘 ) ) ) | 
						
							| 23 |  | velsn | ⊢ ( 𝑘  ∈  { ∅ }  ↔  𝑘  =  ∅ ) | 
						
							| 24 | 23 | notbii | ⊢ ( ¬  𝑘  ∈  { ∅ }  ↔  ¬  𝑘  =  ∅ ) | 
						
							| 25 |  | eqcom | ⊢ ( ( ♯ ‘ 𝑘 )  =  𝑛  ↔  𝑛  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 26 | 25 | rexbii | ⊢ ( ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑘 )  =  𝑛  ↔  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) 𝑛  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 27 | 22 24 26 | 3bitr4g | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑘  ∈  𝒫  𝐴 )  →  ( ¬  𝑘  ∈  { ∅ }  ↔  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑘 )  =  𝑛 ) ) | 
						
							| 28 | 27 | rabbidva | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  { 𝑘  ∈  𝒫  𝐴  ∣  ¬  𝑘  ∈  { ∅ } }  =  { 𝑘  ∈  𝒫  𝐴  ∣  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 29 |  | dfdif2 | ⊢ ( 𝒫  𝐴  ∖  { ∅ } )  =  { 𝑘  ∈  𝒫  𝐴  ∣  ¬  𝑘  ∈  { ∅ } } | 
						
							| 30 |  | iunrab | ⊢ ∪  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  =  { 𝑘  ∈  𝒫  𝐴  ∣  ∃ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ♯ ‘ 𝑘 )  =  𝑛 } | 
						
							| 31 | 28 29 30 | 3eqtr4g | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( 𝒫  𝐴  ∖  { ∅ } )  =  ∪  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 32 | 31 | sumeq1d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Σ 𝑠  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  Σ 𝑠  ∈  ∪  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 33 | 1 32 | eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ 𝑠  ∈  ∪  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 34 |  | fzfid | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( 1 ... ( ♯ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 36 |  | pwfi | ⊢ ( 𝐴  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  𝒫  𝐴  ∈  Fin ) | 
						
							| 38 |  | ssrab2 | ⊢ { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  ⊆  𝒫  𝐴 | 
						
							| 39 |  | ssfi | ⊢ ( ( 𝒫  𝐴  ∈  Fin  ∧  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  ⊆  𝒫  𝐴 )  →  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  ∈  Fin ) | 
						
							| 40 | 37 38 39 | sylancl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  ∈  Fin ) | 
						
							| 41 |  | fveqeq2 | ⊢ ( 𝑘  =  𝑠  →  ( ( ♯ ‘ 𝑘 )  =  𝑛  ↔  ( ♯ ‘ 𝑠 )  =  𝑛 ) ) | 
						
							| 42 | 41 | elrab | ⊢ ( 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  ↔  ( 𝑠  ∈  𝒫  𝐴  ∧  ( ♯ ‘ 𝑠 )  =  𝑛 ) ) | 
						
							| 43 | 42 | simprbi | ⊢ ( 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  →  ( ♯ ‘ 𝑠 )  =  𝑛 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ♯ ‘ 𝑠 )  =  𝑛 ) | 
						
							| 45 | 44 | ralrimiva | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ∀ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ 𝑠 )  =  𝑛 ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ∀ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ∀ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ 𝑠 )  =  𝑛 ) | 
						
							| 47 |  | invdisj | ⊢ ( ∀ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ∀ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ 𝑠 )  =  𝑛  →  Disj  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Disj  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ) | 
						
							| 49 | 44 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ( ♯ ‘ 𝑠 )  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  =  ( - 1 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 52 |  | 1cnd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  1  ∈  ℂ ) | 
						
							| 53 | 52 | negcld | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  - 1  ∈  ℂ ) | 
						
							| 54 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 56 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 58 | 53 57 | expcld | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( - 1 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 60 |  | unifi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ∪  𝐴  ∈  Fin ) | 
						
							| 61 | 60 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ∪  𝐴  ∈  Fin ) | 
						
							| 62 | 55 | adantr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝑛  ∈  ℕ ) | 
						
							| 63 | 44 62 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ♯ ‘ 𝑠 )  ∈  ℕ ) | 
						
							| 64 | 35 | adantr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝐴  ∈  Fin ) | 
						
							| 65 |  | elrabi | ⊢ ( 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 }  →  𝑠  ∈  𝒫  𝐴 ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝑠  ∈  𝒫  𝐴 ) | 
						
							| 67 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  𝐴  →  𝑠  ⊆  𝐴 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝑠  ⊆  𝐴 ) | 
						
							| 69 | 64 68 | ssfid | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝑠  ∈  Fin ) | 
						
							| 70 |  | hashnncl | ⊢ ( 𝑠  ∈  Fin  →  ( ( ♯ ‘ 𝑠 )  ∈  ℕ  ↔  𝑠  ≠  ∅ ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ( ♯ ‘ 𝑠 )  ∈  ℕ  ↔  𝑠  ≠  ∅ ) ) | 
						
							| 72 | 63 71 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  𝑠  ≠  ∅ ) | 
						
							| 73 |  | intssuni | ⊢ ( 𝑠  ≠  ∅  →  ∩  𝑠  ⊆  ∪  𝑠 ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ∩  𝑠  ⊆  ∪  𝑠 ) | 
						
							| 75 | 68 | unissd | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ∪  𝑠  ⊆  ∪  𝐴 ) | 
						
							| 76 | 74 75 | sstrd | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ∩  𝑠  ⊆  ∪  𝐴 ) | 
						
							| 77 | 61 76 | ssfid | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ∩  𝑠  ∈  Fin ) | 
						
							| 78 |  | hashcl | ⊢ ( ∩  𝑠  ∈  Fin  →  ( ♯ ‘ ∩  𝑠 )  ∈  ℕ0 ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ♯ ‘ ∩  𝑠 )  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0cnd | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ♯ ‘ ∩  𝑠 )  ∈  ℂ ) | 
						
							| 81 | 59 80 | mulcld | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  ∈  ℂ ) | 
						
							| 82 | 51 81 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } )  →  ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  ∈  ℂ ) | 
						
							| 83 | 82 | anasss | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  ( 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ∧  𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ) )  →  ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  ∈  ℂ ) | 
						
							| 84 | 34 40 48 83 | fsumiun | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Σ 𝑠  ∈  ∪  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 85 | 51 | sumeq2dv | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 86 | 40 58 80 | fsummulc2 | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ ∩  𝑠 ) )  =  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 87 | 85 86 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 88 | 87 | sumeq2dv | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  Σ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ( - 1 ↑ ( ( ♯ ‘ 𝑠 )  −  1 ) )  ·  ( ♯ ‘ ∩  𝑠 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ ∩  𝑠 ) ) ) | 
						
							| 89 | 33 84 88 | 3eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ⊆  Fin )  →  ( ♯ ‘ ∪  𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ( ( - 1 ↑ ( 𝑛  −  1 ) )  ·  Σ 𝑠  ∈  { 𝑘  ∈  𝒫  𝐴  ∣  ( ♯ ‘ 𝑘 )  =  𝑛 } ( ♯ ‘ ∩  𝑠 ) ) ) |