Metamath Proof Explorer


Theorem iunrab

Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion iunrab 𝑥𝐴 { 𝑦𝐵𝜑 } = { 𝑦𝐵 ∣ ∃ 𝑥𝐴 𝜑 }

Proof

Step Hyp Ref Expression
1 iunab 𝑥𝐴 { 𝑦 ∣ ( 𝑦𝐵𝜑 ) } = { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝑦𝐵𝜑 ) }
2 df-rab { 𝑦𝐵𝜑 } = { 𝑦 ∣ ( 𝑦𝐵𝜑 ) }
3 2 a1i ( 𝑥𝐴 → { 𝑦𝐵𝜑 } = { 𝑦 ∣ ( 𝑦𝐵𝜑 ) } )
4 3 iuneq2i 𝑥𝐴 { 𝑦𝐵𝜑 } = 𝑥𝐴 { 𝑦 ∣ ( 𝑦𝐵𝜑 ) }
5 df-rab { 𝑦𝐵 ∣ ∃ 𝑥𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝜑 ) }
6 r19.42v ( ∃ 𝑥𝐴 ( 𝑦𝐵𝜑 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝜑 ) )
7 6 abbii { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝑦𝐵𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐵 ∧ ∃ 𝑥𝐴 𝜑 ) }
8 5 7 eqtr4i { 𝑦𝐵 ∣ ∃ 𝑥𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥𝐴 ( 𝑦𝐵𝜑 ) }
9 1 4 8 3eqtr4i 𝑥𝐴 { 𝑦𝐵𝜑 } = { 𝑦𝐵 ∣ ∃ 𝑥𝐴 𝜑 }