Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imnani | Unicode version |
Description: Infer implication from negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
Ref | Expression |
---|---|
imnani.1 |
Ref | Expression |
---|---|
imnani |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnani.1 | . 2 | |
2 | imnan 422 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 |
This theorem is referenced by: mptnan 1601 eueq3 3274 onuninsuci 6675 sucprcreg 8046 alephsucdom 8481 pwfseq 9063 eirr 13938 mreexmrid 15040 dvferm1 22386 dvferm2 22388 dchrisumn0 23706 rpvmasum 23711 cvnsym 27209 ballotlem2 28427 bnj1224 33860 bnj1541 33914 bnj1311 34080 bj-imn3ani 34176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |