MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imnani Unicode version

Theorem imnani 423
Description: Infer implication from negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1
Assertion
Ref Expression
imnani

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2
2 imnan 422 . 2
31, 2mpbir 209 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369
This theorem is referenced by:  mptnan  1601  eueq3  3274  onuninsuci  6675  sucprcreg  8046  alephsucdom  8481  pwfseq  9063  eirr  13938  mreexmrid  15040  dvferm1  22386  dvferm2  22388  dchrisumn0  23706  rpvmasum  23711  cvnsym  27209  ballotlem2  28427  bnj1224  33860  bnj1541  33914  bnj1311  34080  bj-imn3ani  34176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator