Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intunsn Unicode version

Theorem intunsn 4326
 Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1
Assertion
Ref Expression
intunsn

Proof of Theorem intunsn
StepHypRef Expression
1 intun 4319 . 2
2 intunsn.1 . . . 4
32intsn 4323 . . 3
43ineq2i 3696 . 2
51, 4eqtri 2486 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  e.wcel 1818   cvv 3109  u.cun 3473  i^icin 3474  {csn 4029  |^|cint 4286 This theorem is referenced by:  fiint  7817  incexclem  13648  heibor1lem  30305 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-un 3480  df-in 3482  df-sn 4030  df-pr 4032  df-int 4287
 Copyright terms: Public domain W3C validator