Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issod Unicode version

Theorem issod 4835
 Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
issod.1
issod.2
Assertion
Ref Expression
issod
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem issod
StepHypRef Expression
1 issod.1 . 2
2 issod.2 . . 3
32ralrimivva 2878 . 2
4 df-so 4806 . 2
51, 3, 4sylanbrc 664 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  \/w3o 972  e.wcel 1818  A.wral 2807   class class class wbr 4452  Powpo 4803  Orwor 4804 This theorem is referenced by:  issoi  4836  swoso  7361  wemapsolem  7996  legso  23985  socnv  29194  fin2so  30040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704 This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2812  df-so 4806
 Copyright terms: Public domain W3C validator