MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1 Unicode version

Theorem ixpeq1 7500
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1
Distinct variable groups:   ,   ,

Proof of Theorem ixpeq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fneq2 5675 . . . 4
2 raleq 3054 . . . 4
31, 2anbi12d 710 . . 3
43abbidv 2593 . 2
5 dfixp 7491 . 2
6 dfixp 7491 . 2
74, 5, 63eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  A.wral 2807  Fnwfn 5588  `cfv 5593  X_cixp 7489
This theorem is referenced by:  ixpeq1d  7501  finixpnum  30038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-fn 5596  df-ixp 7490
  Copyright terms: Public domain W3C validator