Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dv Unicode version

Theorem ixpeq2dv 7505
 Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dv.1
Assertion
Ref Expression
ixpeq2dv
Distinct variable group:   ,

Proof of Theorem ixpeq2dv
StepHypRef Expression
1 ixpeq2dv.1 . . 3
21adantr 465 . 2
32ixpeq2dva 7504 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  X_cixp 7489 This theorem is referenced by:  prdsval  14852  brssc  15183  isfunc  15233  natfval  15315  isnat  15316  dprdval  17034  dprdvalOLD  17036  elpt  20073  elptr  20074  dfac14  20119 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-in 3482  df-ss 3489  df-ixp 7490
 Copyright terms: Public domain W3C validator