Metamath Proof Explorer


Theorem 0blo

Description: The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0blo.0
|- Z = ( U 0op W )
0blo.7
|- B = ( U BLnOp W )
Assertion 0blo
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. B )

Proof

Step Hyp Ref Expression
1 0blo.0
 |-  Z = ( U 0op W )
2 0blo.7
 |-  B = ( U BLnOp W )
3 eqid
 |-  ( U LnOp W ) = ( U LnOp W )
4 1 3 0lno
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. ( U LnOp W ) )
5 eqid
 |-  ( U normOpOLD W ) = ( U normOpOLD W )
6 5 1 nmoo0
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( ( U normOpOLD W ) ` Z ) = 0 )
7 0re
 |-  0 e. RR
8 6 7 eqeltrdi
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( ( U normOpOLD W ) ` Z ) e. RR )
9 5 3 2 isblo2
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( Z e. B <-> ( Z e. ( U LnOp W ) /\ ( ( U normOpOLD W ) ` Z ) e. RR ) ) )
10 4 8 9 mpbir2and
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z e. B )