Metamath Proof Explorer


Theorem 0blo

Description: The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses 0blo.0 Z=U0opW
0blo.7 B=UBLnOpW
Assertion 0blo UNrmCVecWNrmCVecZB

Proof

Step Hyp Ref Expression
1 0blo.0 Z=U0opW
2 0blo.7 B=UBLnOpW
3 eqid ULnOpW=ULnOpW
4 1 3 0lno UNrmCVecWNrmCVecZULnOpW
5 eqid UnormOpOLDW=UnormOpOLDW
6 5 1 nmoo0 UNrmCVecWNrmCVecUnormOpOLDWZ=0
7 0re 0
8 6 7 eqeltrdi UNrmCVecWNrmCVecUnormOpOLDWZ
9 5 3 2 isblo2 UNrmCVecWNrmCVecZBZULnOpWUnormOpOLDWZ
10 4 8 9 mpbir2and UNrmCVecWNrmCVecZB