Metamath Proof Explorer


Theorem isblo2

Description: The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3 N=UnormOpOLDW
bloval.4 L=ULnOpW
bloval.5 B=UBLnOpW
Assertion isblo2 UNrmCVecWNrmCVecTBTLNT

Proof

Step Hyp Ref Expression
1 bloval.3 N=UnormOpOLDW
2 bloval.4 L=ULnOpW
3 bloval.5 B=UBLnOpW
4 1 2 3 isblo UNrmCVecWNrmCVecTBTLNT<+∞
5 eqid BaseSetU=BaseSetU
6 eqid BaseSetW=BaseSetW
7 5 6 2 lnof UNrmCVecWNrmCVecTLT:BaseSetUBaseSetW
8 5 6 1 nmoreltpnf UNrmCVecWNrmCVecT:BaseSetUBaseSetWNTNT<+∞
9 7 8 syld3an3 UNrmCVecWNrmCVecTLNTNT<+∞
10 9 3expa UNrmCVecWNrmCVecTLNTNT<+∞
11 10 pm5.32da UNrmCVecWNrmCVecTLNTTLNT<+∞
12 4 11 bitr4d UNrmCVecWNrmCVecTBTLNT