Metamath Proof Explorer


Theorem isblo

Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloval.3 N=UnormOpOLDW
bloval.4 L=ULnOpW
bloval.5 B=UBLnOpW
Assertion isblo UNrmCVecWNrmCVecTBTLNT<+∞

Proof

Step Hyp Ref Expression
1 bloval.3 N=UnormOpOLDW
2 bloval.4 L=ULnOpW
3 bloval.5 B=UBLnOpW
4 1 2 3 bloval UNrmCVecWNrmCVecB=tL|Nt<+∞
5 4 eleq2d UNrmCVecWNrmCVecTBTtL|Nt<+∞
6 fveq2 t=TNt=NT
7 6 breq1d t=TNt<+∞NT<+∞
8 7 elrab TtL|Nt<+∞TLNT<+∞
9 5 8 bitrdi UNrmCVecWNrmCVecTBTLNT<+∞