| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bloval.3 |  |-  N = ( U normOpOLD W ) | 
						
							| 2 |  | bloval.4 |  |-  L = ( U LnOp W ) | 
						
							| 3 |  | bloval.5 |  |-  B = ( U BLnOp W ) | 
						
							| 4 | 1 2 3 | bloval |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> T e. { t e. L | ( N ` t ) < +oo } ) ) | 
						
							| 6 |  | fveq2 |  |-  ( t = T -> ( N ` t ) = ( N ` T ) ) | 
						
							| 7 | 6 | breq1d |  |-  ( t = T -> ( ( N ` t ) < +oo <-> ( N ` T ) < +oo ) ) | 
						
							| 8 | 7 | elrab |  |-  ( T e. { t e. L | ( N ` t ) < +oo } <-> ( T e. L /\ ( N ` T ) < +oo ) ) | 
						
							| 9 | 5 8 | bitrdi |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. L /\ ( N ` T ) < +oo ) ) ) |