| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0clwlk.v |
|- V = ( Vtx ` G ) |
| 2 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
| 3 |
2
|
eqcomi |
|- { 0 } = ( 0 ... 0 ) |
| 4 |
3
|
feq2i |
|- ( P : { 0 } --> { X } <-> P : ( 0 ... 0 ) --> { X } ) |
| 5 |
4
|
biimpi |
|- ( P : { 0 } --> { X } -> P : ( 0 ... 0 ) --> { X } ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> { X } ) |
| 7 |
|
snssi |
|- ( X e. V -> { X } C_ V ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> { X } C_ V ) |
| 9 |
6 8
|
fssd |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> P : ( 0 ... 0 ) --> V ) |
| 10 |
|
breq1 |
|- ( F = (/) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> (/) ( ClWalks ` G ) P ) ) |
| 12 |
1
|
1vgrex |
|- ( X e. V -> G e. _V ) |
| 13 |
1
|
0clwlk |
|- ( G e. _V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 14 |
12 13
|
syl |
|- ( X e. V -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 16 |
11 15
|
bitrd |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> ( F ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 17 |
9 16
|
mpbird |
|- ( ( X e. V /\ F = (/) /\ P : { 0 } --> { X } ) -> F ( ClWalks ` G ) P ) |