| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1pr | 
							 |-  1P e. P.  | 
						
						
							| 2 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. )  | 
						
						
							| 3 | 
							
								1 1 2
							 | 
							mp2an | 
							 |-  ( 1P +P. 1P ) e. P.  | 
						
						
							| 4 | 
							
								
							 | 
							ltaddpr | 
							 |-  ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( 1P +P. 1P )   | 
						
						
							| 5 | 
							
								3 1 4
							 | 
							mp2an | 
							 |-  ( 1P +P. 1P )   | 
						
						
							| 6 | 
							
								
							 | 
							addcompr | 
							 |-  ( 1P +P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) +P. 1P )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							breqtrri | 
							 |-  ( 1P +P. 1P )   | 
						
						
							| 8 | 
							
								
							 | 
							ltsrpr | 
							 |-  ( [ <. 1P , 1P >. ] ~R . ] ~R <-> ( 1P +P. 1P )   | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpbir | 
							 |-  [ <. 1P , 1P >. ] ~R . ] ~R  | 
						
						
							| 10 | 
							
								
							 | 
							df-0r | 
							 |-  0R = [ <. 1P , 1P >. ] ~R  | 
						
						
							| 11 | 
							
								
							 | 
							df-1r | 
							 |-  1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3brtr4i | 
							 |-  0R   |