Metamath Proof Explorer


Theorem 0lt1sr

Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 0lt1sr 0R <R 1R

Proof

Step Hyp Ref Expression
1 1pr 1PP
2 addclpr ( ( 1PP ∧ 1PP ) → ( 1P +P 1P ) ∈ P )
3 1 1 2 mp2an ( 1P +P 1P ) ∈ P
4 ltaddpr ( ( ( 1P +P 1P ) ∈ P ∧ 1PP ) → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 1P ) )
5 3 1 4 mp2an ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 1P )
6 addcompr ( 1P +P ( 1P +P 1P ) ) = ( ( 1P +P 1P ) +P 1P )
7 5 6 breqtrri ( 1P +P 1P ) <P ( 1P +P ( 1P +P 1P ) )
8 ltsrpr ( [ ⟨ 1P , 1P ⟩ ] ~R <R [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R ↔ ( 1P +P 1P ) <P ( 1P +P ( 1P +P 1P ) ) )
9 7 8 mpbir [ ⟨ 1P , 1P ⟩ ] ~R <R [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R
10 df-0r 0R = [ ⟨ 1P , 1P ⟩ ] ~R
11 df-1r 1R = [ ⟨ ( 1P +P 1P ) , 1P ⟩ ] ~R
12 9 10 11 3brtr4i 0R <R 1R